H2S-B4 Hydrogen Sulfide Sensor 4-Electrode # Figure 1 H2S-B4 Schematic Diagram **PATENTED** | PERFORMANCE | Sensitivity Response time Zero current Noise* Limit of detection* Range Linearity Overgas limit * Requires a low no | nA/ppm in 2ppm H ₂ S
t ₉₀ (s) from zero to 1ppm H ₂ S
nA in zero air at 20°C
RMS noise (ppb equivalent)
ppb equivalent
ppm H ₂ S limit of performanc
ppm error at full scale, linear
maximum ppm for stable resise potentiostat circuit for low | e warranty
at zero and 2ppm H ₂ S
ponse to gas pulse | 1400 to 2500
< 50
-70 to -200
< 4
< 10
25
-1 to +5
100 | |-----------------------|--|--|--|---| | LIFETIME | Zero drift
Sensitivity drift
Operating life | ppb equivalent change/year
% change/year in lab air, mo
months until 80% original sig | onthly test | nd
nd
> 24 | | ENVIRONMENTAL | Sensitivity @ -20°C % (output @ -20°C/output @ 20°C) @ 2ppm H ₂ S Sensitivity @ 50°C % (output @ 50°C/output @ 20°C) @ 2ppm H ₂ S Zero @ -20°C ppm equivalent change from 20°C ppm equivalent change from 20°C | | | 77 to 85
108 to 115
< 0 to 0.05
< 0 to -0.1 | | CROSS
SENSITIVITY | Cl ₂ sensitivity % NO sensitivity % SO ₂ sensitivity % CO sensitivity % H ₂ sensitivity % C ₂ H ₄ sensitivity % NH ₃ sensitivity % | 6 measured gas @ 10ppm
6 measured gas @ 10ppm
6 measured gas @ 10ppm
6 measured gas @ 20ppm
6 measured gas @ 10ppm
6 measured gas @ 400ppm
6 measured gas @ 20ppm
6 measured gas @ 20ppm
6 measured gas @ 5% | $\begin{array}{c} {\rm NO_2} \\ {\rm CI_2} \\ {\rm NO} \\ {\rm SO_2} \\ {\rm CO} \\ {\rm H_2} \\ {\rm C_2H_4} \\ {\rm NH_3} \\ {\rm CO_2} \end{array}$ | < -10
< -25
< 35
< 18
< 3
< 0.5
< 0.5
< 0.1
< 0.1 | | KEY
SPECIFICATIONS | Temperature range
Pressure range
Humidity range
Storage period
Load resistor
Weight | e °C
kPa
% rh
months @ 3 to 20°C (store
Ω (recommended)
g | d in sealed pot) | -30 to 50
80 to 120
15 to 90
6
33 to 100
< 13 | # Specification echnica # **H2S-B4 Performance Data** # Figure 2 Sensitivity Temperature Dependence Figure 2 shows the variation in sensitivity caused by changes in temperature. This data is taken from a typical batch of sensors. ### Figure 3 Zero Temperature Dependence (corrected) Figure 3 shows the variation in zero output caused by changes in temperature, expressed as ppm gas equivalent, referenced to zero at 20°C. This excellent zero performance requires a low noise circuit and zero correction using the auxiliary electrode. This data is taken from a typical batch of sensors. ## Figure 4 Linearity to 200ppb H₂S The H2S-B4 responds linearly at low concentrations, showing repeatable performance at concentrations below 200ppb.