OKI Electronic Components This version: Previous version: May 2000

OAT1231T-M-05

Preliminary

Oct. 2000

MT-RJ Transceiver at 1.25 Gbit/s

GENERAL DESCRIPTION

The OAT1231T-M-05 transceiver is a short wavelength optical transceiver intended for up to 1.25 Gbit/s applications such as Gigabit Ethernet and Fibre Channel. Reduced laser power permits Class I laser operation without an Open Fibre Control (OFC) circuit. The transceiver operate from 3.3 V DC power supply and with LVPECL logic interface. Package style is the multisourced 2 × 5 pin small form factor with integral MT-RJ connector interface. The Transceiver is provide double port densities from traditional SC 1 × 9 transceiver.

FEATURES

- Multisourced 2 × 5 pin small form factor package
- MT-RJ connector interface
- Compliant with IEEE 802.3 z/Gigabit Ethernet
- Transmission length
 - -Up to 550 m with 50/125 μm MMF Cables
 - -Up to 220 m with 62.5/125 µm MMF Cables
- Single 3.3 V power supply
- LVPECL logic compatible data interface
- 850 nm Vertical Cavity Surface Emitting Laser (VECSEL)
- Class I Laser eye safe
- 0°C to 70°C operating temperature range
- Transmitter disable input
- TTL signal detect output
- Wave solderable and aqueous washable

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Ts	-40	85	°C
Operating Temperature	T _A	0	70	°C
Lead Soldering Temperature	_	_	260/10	°C/s
Supply Voltage	V _{cc}	_	5	V

TRANSCEIVER OPTICAL AND ELECTRICAL CHARACTERISTICS

Transmitter Section ($T_C = 0$ °C to 70°C, $V_{CC} = 3.135$ V to 3.465 V)

Transmitter Section (1 _C = 0.5 to 70 G, v _{CC} = 5.155 V to 5.455						
Parameter		Notes	Symbol	Min.	Max.	Unit
Average Optical Output Power	50 μm MMF		Po	-9.5	-3	dBm
Optical Wavelength			λς	830	860	nm
RMS Spectral Width			Δλ	_	0.85	nm
Extinction Ratio			Er	9	_	dB
Relative Intensity Noise			RIN	_	-117	dB/Hz
Output Rise Time		1, 2	T_R	_	260	ps
Output Fall Time		1, 2	T _F	_	260	ps
Power Supply Current			I _{CCT}	_	60	mA
Differential Input Voltage			V _{IN}	0.7	2.2	V
Deterministic Jitter		3	DJ	_	0.10	UI
Total Jitter		3	TJ	_	0.284	UI
Transmit Disable Voltage	Disable	5	V_{ID}	V _{CC} -1.3	_	V
	Enable	5	V _{IE}	_	0.8	V

Receiver Section ($T_C = 0$ °C to 70°C, $V_{CC} = 3.135$ V to 3.465 V)

Parameter		Notes	Symbol	Min	Max	Unit
Optical Input Sensitivity		6	P_{IN}	-17	-3	dBm
Optical Wavelength			λς	770	860	nm
Return Loss				12	_	dB
Power Supply Current			I _{CCR}	_	115	mA
Output Voltage Levels		4	V_{OL}	V _{CC} -1.892	V _{cc} – 1.548	V
		4	V_{OH}	V _{CC} -1.051	V _{CC} -0.879	V
Signal Detect Output Voltage	High	5	V _{OA}	V _{CC} - 0.8	_	V
	Low	5	V _{OD}	_	0.4	V

Notes

- 1. Measured from 20 to 80% point on rising and falling edge of unfiltered waveform.
- Transmitter optical waveform characteristics are specified by an eye diagram shown in Figure 1.
 - The eye mask test is performed using a receiver with a fourth-order Bessel Thompson filter discussed in IEEE802.3Z.
- 3. Compliance point is TP1 to TP2 per IEEE802.3 z, section clause 38.6.11 TD = DJ + RJ
- 4. LVPECL compatible interface.
- 5. TTL compatible interface.
- 6. BER of 1×10^{-12} measured with 1.25 Gbit/s 2^{7} –1 PRBS.

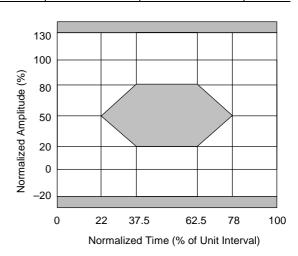


Figure 1. Transmitter Eye Diagram

APPLICATION INFORMATION

Handling precautions

OKI advises that precautions be taken to avoid electrostatic discharge (ESD) during handling, assembly, and testing of the OAT1231T-M-05. Degradation or damage can occur if proper guidelines for handling ESD sensitive devices are not followed. This could result in an inoperable device or unsafe operation.

In particular, avoid getting particulate or solvent contamination onto the optical surfaces of the laser and photodetector assemblies. It is also strongly recommended that the MT-RJ connector receptacle be covered when not in use, using the Process Plug that is supplied with the OAT1231T-M-05 transceiver.

Regulatory information

The OKI OAT1231T-M-05 module is certified to be Class I laser product under the requirements of U. S. 21 CFR Subchapter J when used as specified by OKI. Class I products are considered to be safe. Any modification, adjustment, or use of the OAT1231T-M-05 module not specified by OKI may void the certification of the product and constitute an act of new manufacturing of a laser product under 21 CFR Subchapter J, and as such will require recertification by the new manufacturer.

Signal Detect

The Signal Detect(SD) output is positive TTL logic. This output provides a logical low output signal when the optical signal into the receiver has been interrupted or the light level has fallen below the minimum signal-detect threshold. This signal is used to get a state of receiving DATA logically, not a BET monitor.

Transmitter Disable

The Transmitter Disable(Tdis) input is a laser enable function. When Tdis is TTL logical low input or opened transmitter is normally operating. When Tdis is TTL logical high input transmitter optical output is shut down.

PIN DESCRIPTION

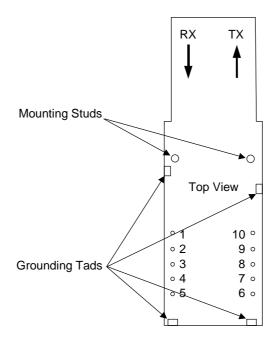


Figure 2. Pin Description

Pin	Symbol	Description				
Two Mounting Studs		Two mounting studs are provided for transceiver mechanical attachment to the circuit board. They may also provide an optical connection of the transceiver to the equipment chassis ground.				
Four Grounding Tabs		Four grounding tabs are provided for improvement of EMI suppression. They should be connected to signal ground.				
1	V_{EER}	Receiver Signal Ground.				
2	V _{CCR}	Receiver Power Supply.				
3	SD	Signal Detect. Normal Operation: Logic "1" Output. Fault Condition: Logic "0" Output.				
4	RD-	Received Data Out Bar. No internal terminations are provided.				
5	RD+	Received Data Out. No internal terminations are provided.				
6	V _{CCT}	Transmitter Power Supply.				
7	V_{EET}	Transmitter Signal Ground.				
8	T _{DIS}	Transmitter Disable. Normal Operation: Logic "0" Input or Open Transmit Disable: Logic "1" Input or Connect V _{CC}				
9	TD+	Transmitter Data In. An internal 50 Ω termination is provided, consisting of a Thevenin termination.				
10	TD-	Transmitter Data In Bar. An internal 50 Ω termination is provided, consisting of a Thevenin termination.				

ELECTRICAL INTERFACE CIRCUITS

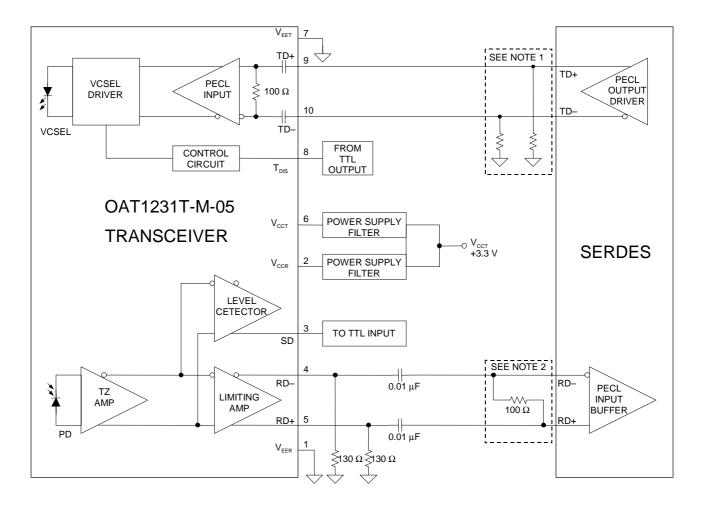
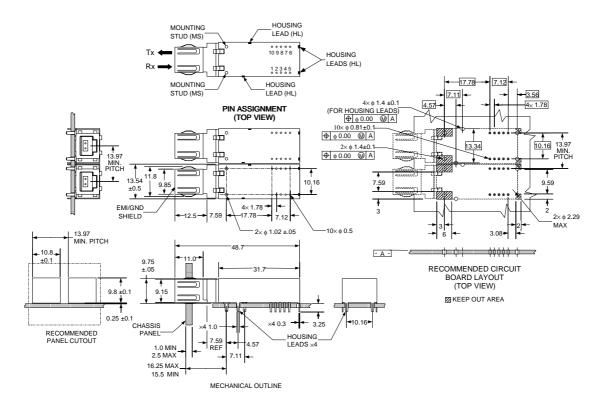



Figure 3. Example of TD+/- and RD+/- Termination

Notes:

- 1. Consult the serdes manufacturer for these resistor values because these values depend on the serdes chip.
- 2. Consult the serdes manufacturer for the termination method.

PACKAGE OUTLINE

DIMENSIONS ARE IN MILLIMETERS

Figure 5. OAT1231T-M-05 Mechanical Outline & Installation Drawing

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2000 Oki Electric Industry Co., Ltd.