OKI Semiconductor

This version: Nov. 2001 Previous version: Aug. 1998

MSM7584D

π /4 Shift QPSK MODEM/ADPCM CODEC

GENERAL DESCRIPTION

The MSM7584D is a CMOS IC developed for use with digital cordless telephones. The device provides a $\pi/4$ shift QPSK modem function and a CODEC function which performs transcoding between the voice band analog signal and 32 kbps ADPCM data.

The MSM7584C is ideal for use in a handset of the PHS (Personal Handyphone System).

FEATURES

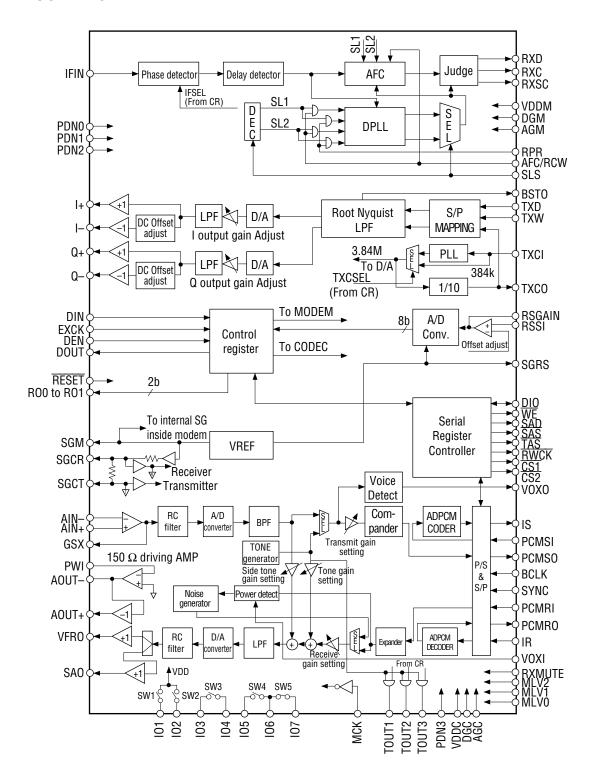
 $(\pi/4 \text{ Shift QPSK Modem})$

- Built-in root Nyquist filter (α (rolloff rate) = 0.5) for the baseband limiter
- Differential I and Q analog outputs
- The DC offset and gain can be adjusted with respect to the differential I and Q analog outputs
- Completely digitized $\pi/4$ shift QPSK demodulator system
- Input IF signal frequency of 1.2 MHz or 10.8 MHz is available.
- Built-in A/D converter for RSSI detection

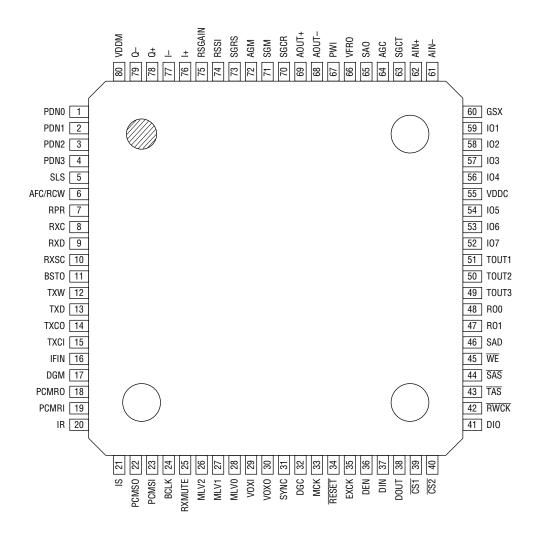
(ADPCM CODEC)

- ADPCM: ITU-T Recommendations G.726 (32 kbps)
- Transmit/receive full duplex capability
- PCM interface code format: selectable between μ-law and A-law
- Built-in transmit/receive mute function and transmit/receive programmable gain setting function
- Side tone path formation and level adjustment capabilities
- Built-in DTMF tone and other tones
- Built-in VOX function
- Built-in speech recording/playing interface
- Built-in 150 Ω driving OP AMP
- Built-in various analog switches

(Common)


- Single 3V power supply (V_{DD}: 2.7 V to 3.6 V)
- Mode setting through serial interface
- Low power consumption

When the modem unit is operating : 13 mA Typ. $(V_{DD} = 3.0 \text{ V})$ When the ADPCM CODEC unit is operating : 7 mA Typ. $(V_{DD} = 3.0 \text{ V})$ When in the power down mode : 0.03 mA Typ. $(V_{DD} = 3.0 \text{ V})$


Package:

80-pin plastic TQFP (TQFP80-P-1212-0.50-K) (Product name: MSM7584DTS-K)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

80-Pin Plastic TQFP

PIN AND FUNCTIONAL DESCRIPTIONS (ADPCM CODEC)

AIN+, AIN-, GSX

Transmit analog inputs and transmit level adjustment pin.

The AIN– input is connected to the inverting input of the internal transmit amplifier and AIN+ input is connected to the non-inverting input. The GSX pin is connected to the output pin of the amplifier.

See Figure 1 for level adjustment.

VFRO, SAO

Receive analog output and sounder output.

VFRO is a receive filter output pin and SAO is a sounder output pin. These outputs can directly drive the load of over $10 \, k\Omega$. When the system is in the power down mode, these outputs become high impedance.

AOUT+, AOUT-, PWI

Input and outputs for internal operation amplifier.

See Figure 1 for connection. When the system is in the power down mode, these outputs become high impedance. The AOUT- and AOUT+ outputs can directly drive the load of over 150 Ω .

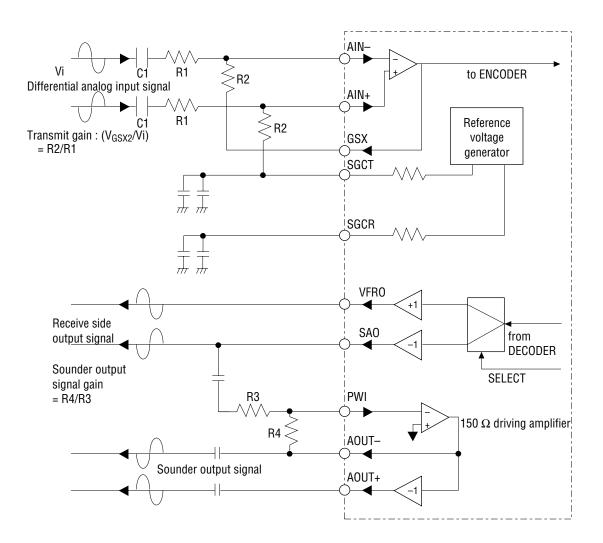


Figure 1 Analog Interface

SGCT, SGCR

Outputs for CODEC analog signal ground.

The output voltage is approximately 1.4 V. Insert 10 μ F and 0.1 μ F bypass capacitors (ceramic type) between these pins and the AG pin. When the device is in power down mode, the output is 0 V.

SGCT is used for transmitting and SGCR is for receiving.

The SG voltage if necessary should be used via a buffer.

AGC

ADPCM CODEC analog ground (0 V).

DGC

ADPCM CODEC digital ground (0 V).

Since this pin is internally separated from AGC and AGM (modem ground pin), this pin must be connected to these pins as close as possible on the circuit board.

VDDC

ADPCM CODEC 3 V power supply.

Connect this pin to the MODEM power Supply VDDM as close as possible on the circuit boards.

PDN3

ADPCM CODEC power down control input.

When this pin is set to "0" level, the device enters power down mode.

During normal operation mode, set this pin to "1" level.

The power down mode is controlled by CR0 - B5 of the control register ORed with the signal from the PDN3 pin. Therefore, when using this pin, set CR0 - B5 to digital "0".

OKI Semiconductor MSM7584D

PCMSO

Transmit PCM data output.

This PCM output signal is output from MSB synchronously with the rising edge of BCLK and SYNC.

PCMSI

Transmit PCM data input.

This signal is converted to the ADPCM data. The PCM signal is shifted in on the falling edge of BCLK. Normally, this pin is connected to PCMSO.

PCMRO

Receive PCM data output.

The PCM signal is the output signal after ADPCM decoder processing. This signal is serially output from the MSB synchronously with the rising edge of BCLK and SYNC.

PCMRI

Receive PCM data input.

The PCM input signal is shifted in on the rising edge of BCLK input from MSB. Normally, this pin is connected to PCMRO.

IS

Transmit ADPCM signal output.

This signal is the output signal after ADPCM encoding, and is serially output from MSB synchronously with the rising edge of BCLK and SYNC. This pin is an open drain output which requires a pull-up resistor and goes to a high impedence state during power-down mode.

IR

Receive ADPCM signal input.

Input data is shifted in serially from MSB on the rising edge of BCLK synchronously with SYNC.

BCLK

Shift clock input for the PCM data (PCMSO, PCMSI, PCMRO, PCMRI) and the ADPCM data (IS, IR).

The frequency ranges from 64 kHz to 2048 kHz.

SYNC

8 kHz synchronous signal input for transmit/receive PCM and ADPCM data.

This signal should be synchronous with BCLK. SYNC is used for indicating MSB of the transmit serial PCM and ADPCM data stream.

MSM7584D

RXMUTE

Receive voice path mute control input. When this pin is at "0" level, the device enters normal mode. When at "1" level, the voice level is muted to the value which has been set by MLV2, MLV1, MLV0.

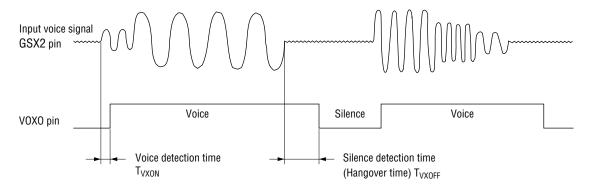
This pin is internally ORed like CR1-B3. Therefore, when using this pin, set CR1-B3 to digital "0".

MLV2, MLV1, MLV0

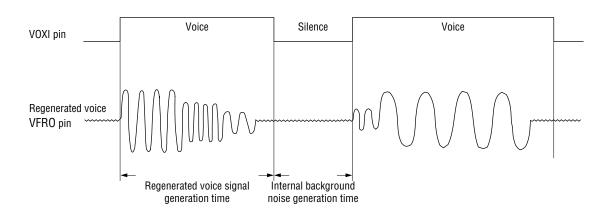
Receive voice path mute level setup signals. See the control register map for control method. These signals are internally ORed with CR1-B2, B1, B0, respectively.

Therefore, when using this pin, set these register data to digital "0".

VOXO


Transmit VOX function signal output.

VOX function is used to recognize the presence or absence of the transmit voice signal by detecting the signal energy. "1" and "0" levels on this pin correspond to the presence and the absence, respectively. This result also appears at the register CR7 - B7. The signal energy detect threshold is set by the control register data CR6 - B6, B5.


VOXI

Signal input for receive VOX function.

The "1" level on VOXI indicates the presence of voice signal, in which case the decoder block processes normal receive signal and the voice signal appears at analog output pins. The "0" level indicates the absence of voice signal, in which case the background noise generated in this device is transferred to the analog output pins. The background noise amplitude is set by the control register CR6. Because this signal is ORed with the register data CR6 - B3, the control register data CR6 - B3 should be set to digital "0".

(a) Transmission Side VOX Function Timing Diagram

(b) Receive Side VOX Function Timing Diagram

Note: The VOXO and VOXI pin function are enabled when CR6 - B7 is set to "1".

Figure 2 VOX Function

(Voice Recording Serial Controller)

DIO

Input/output pin that outputs write data and to input read data.

Connect this pin to the DIN pin, DOUT pin of the serial registers and the DOUT pin of the serial voice ROM. If neither a serial register nor a serial voice ROM is connected, pull this pin up with an approx. $10 \text{ k}\Omega$ resistor.

WE

Output that selects the read mode or write mode.

Connect this pin to the $\overline{\text{WE}}$ pin of the serial registers.

SAD

Read/write start address output.

Connect this pin to the SAD pin of the serial registers and the SADX pin of the serial voice ROM.

SAS

Output of clocks for writing serial address.

Connect this pin to the \overline{SAS} pin of the serial registers and the \overline{SASX} and \overline{SASY} pins of the serial voice ROM.

TAS

Strobe signal output that sets the serial address which is entered from the SAD pin, to the address counter inside the serial register/serial voice ROM.

Connect this pin to the \overline{TAS} pins of the serial registers and serial voice ROM.

RWCK

Output of clocks for reading data from or writing data to the serial registers.

Connect this pin to the <u>RWCK</u> pin of the serial registers and the <u>PDCK</u> pin of the serial voice ROM.

CS1, CS2

Chip select pins.

Connect $\overline{CS1}$ to the \overline{CS} pin of the serial registers.

Connect $\overline{CS2}$ to the \overline{CS} pin of the serial voice ROM.

(Modem)

TXD

384 kbps transmit data input.

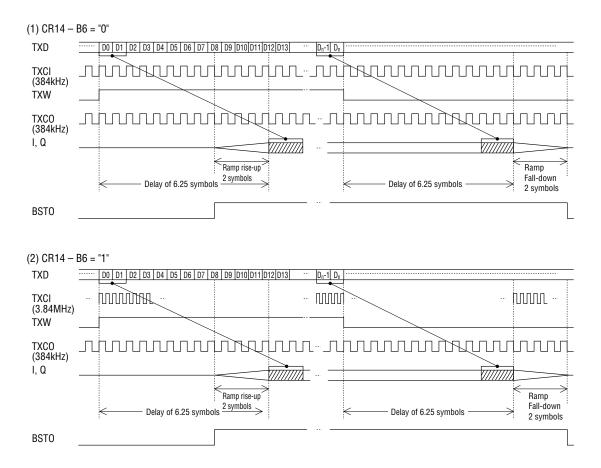
TXCI

Transmit clock input.

When the control register CR14 - B6 is "0", a 384 kHz clock pulse synchronous with TXD should be input to this pin. This clock pulse should be continuous because this device use APLL to generate an internal clock pulse.

When CR14 - B6 is "1", a 3.84 MHz clock pulse should be input to this pin. When the 3.84 MHz clock pulse is applied, a 384 kHz clock pulse, which is generated by dividing the TXCI by 10, is output to the TXCO pin. The transmit data, synchronous to the 384 kHz clock pulse, should be input to the TXD. In this case the devices do not use APLL, and the 3.84 MHz clock pulse need not be continuous. (Refer to Fig. 3)

TXCO


Transmit clock output.

When CR14 - B6 is "0", TXCO outputs the 384 kHz clock pulse (APLL output) for monitoring purposes. When CR14 - B6 is "1", this pin outputs a 384 kHz clock pulse generated by dividing the TXCI input by 10. (Refer to Fig. 3)

TXW

Transmit data window signal input.

The transmit timing signal for the burst data is input to this pin. If TXW is "1", the modulation data is output. (Refer to Fig. 3)

Figure 3 Transmit Timing Diagram

MSM7584D

BSTO

BSTO is the modulator side burst output position specification signal.

The burst time and position of the I and Q analog output including the lamp bits are output. (Refer to Fig. 3)

I+, I-

Quadrature modulation signal I Component differential analog output.

Their output levels are 500 mV_{PP} (maximum) with 1.6 Vdc as the center value. The output pin load conditions are: $R \ge 10 \,\mathrm{k}\Omega$, $C \le 20 \,\mathrm{pF}$. The gain of these pins can be adjusted using the control register CR15 - B7 to B4, and the offset voltage at the I– pin can be adjusted using CR16 - B7 to B3.

Q+, Q-

Quadrature modulation signal Q component differential analog outputs.

Their output levels are 500 mV_{PP} (maximum) with 1.6 Vdc as the center value. The output pin load conditions are: $R \ge 10 \, k\Omega$, $C \le 20 \, pF$. The gain of these pins can be adjusted using the control register CR15 - B7 to B4, and the offset voltage at the Q– pin can be adjusted by using CR17 - B7 to B3.

SGM

MODEM internal reference voltage output.

The output voltage value is approximately 2.0 V. Insert a bypass capacitor of approximately 0.1 μF between this pin and the AGM pin.

The SG voltage if necessary should be used via a buffer.

MSM7584D

PDN0, PDN1, PDN2

Various power down controls.

PDN0 controls the standby mode/communication mode; PDN1 controls the modulator; PDN2 controls the demodulator. Refer to Table 1 for details.

Table 1 Description of Modem Power Down Control

	PDN0	PDN2	PDN1	Operation State	Mode Name
Standby Mode	0	0/1	0	Entire system is powered down. The control register is not reset.	Mode A
	0	0/1	1	Modulator unit is powered off. (VREF and PLL also powered off.) Demodulator unit is powered on.	Mode B
Commu- nication Mode	1	0	0	Modulator unit is powered off. (VREF and PLL are powered on.) I and Q outputs are in a high impedance state. Only the demodulator clock regenerator unit is powered on.	Mode C
	1	0	1	Modulator unit is powered off. (VREF and PLL are powered on.) I and Q outputs are in a high impedance state. Demodulator unit is powered on.	Mode D
	1	1	0	Modulator unit is powered on. Only the demodulator clock regenerator unit is powered on.	Mode E
	1	1	1	Modulator unit is powered on. Demodulator unit is powered on.	Mode F

VDDM

+3 V power supply for the modem unit.

Connect this pin to the ADPCM CODEC power supply VDDC on the board.

AGM

Modem analog signal ground.

DGM

Modem digital signal ground.

Since this pin is internally separated from AGM, AGC, and DGC, this pin must be connected to theses pins on the board.

MCK

Master clock input. The clock frequency is 19.2 MHz.

The master clock must always be input to the ADPCM CODEC and MODEM except the device being in power down mode because the both units share the master clock.

If the input level is less than 2 V, the master clock must be input after DC-component is cut by an approx. 1000 pF capacitor. (See the application circuit example.)

IFIN

Modulated signal input for the demodulator unit.

The CR14 - B4 can select an IF frequency of 1.2 MHz or 10.8 MHz.

RXD, RXC, RXSC

Receive data, receive clock (384 kHz), receive symbol clock (192 kHz) outputs.

When the power is turned on, outputs in which a clock regeneration circuit selected by SLS appear on these output pin.

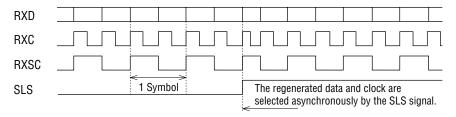


Figure 4 Timing Diagram of RXD, RXC, and RXSC

SLS

Receive side operation slot selection signal.

This device has two clock regeneration circuits and two AFC data memory registers. If SLS is at "0" level, slot 1 is selected; if SLS is at "1" level, slot 2 is selected.

RPR

High-speed phase clock control signal input for the clock regeneration circuit.

If this pin is at "1" level, the clock regeneration circuit enters the high-speed phase clock mode. When the phase difference is less than a defined value, the circuit shifts to the low-speed phase clock mode automatically. If this pin is at "0" level, the circuit is always in the low-speed phase clock mode.

AFC/RCW

AFC operation and clock regeneration range specification signal input.

As shown in Figure 5, AFC information is reset when AFC/RCW and RPR go to "1" level. The AFC operation starts after a certain time elapses.

The average number of AFC operation times is small when RPR is at "1" level.

The average number of AFC operation times is large when RPR is at "0" level.

If AFC/RCW is at "0" level, DPLL will not adjust the phase.

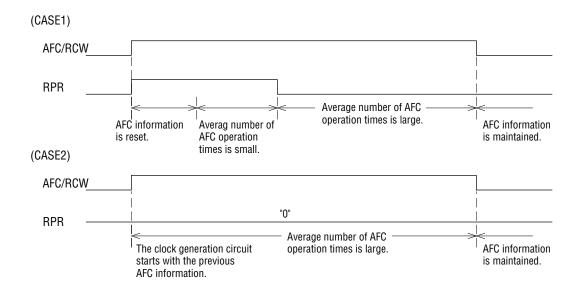


Figure 5 AFC Control Timing Diagram

(Common)

RESET

Device reset input.

The control registers CR0 to CR22 all are reset to the initial values by setting this pin to "0" level. The reset width (during "L") should be 200µs or more.

Be sure to initialize all the control registers by executing this RESET to keep this pin to digital "0" level for 200ns or longer after the power is turned on and the V_{DD} exceeds 2.7V.

R0, R1

Output ports for the control register CR21.

The data written in CR21 - B0 and B1 are output on the R0 and R1 pins.

These pins become high impedance when the device is reset.

DEN, EXCK, DIN DOUT

Serial control ports for the microcontroller interface.

The device has 23 bytes of control registers. Data is written and read by the external CPU using these ports. DEN is an enable signal input, EXCK is a data shift clock signal input, DIN is an address/data input, and DOUT is a data output.

The input/output timing is shown in Fig. 6.

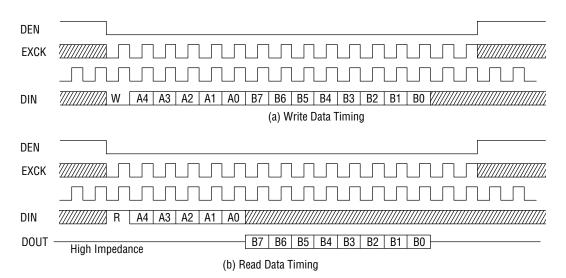


Figure 6 MCU Interface I/O Timing

The control register map is shown in Table 2.

As shown in Fig. 6, data should be written or read in continuous pulses of the EXCK signal or in 16 bits.

101 to 107

Input/output for internal analog switches.

See the control register map (CR22) and circuit configuration for connection information and control method.

TOUT1, TOUT2, TOUT3

Sign bit outputs for the tone generator.

The outputs are controlled by the control register CR22. See the control register map and circuit configuration for connection information and control method.

Table 2 Control Register Map

Register		Ad	dre	ss				I	Data Des	scription	1			Register
-	Α4	АЗ	A2	Α1	Α0	В7	В6	B5	B4	В3	B2	B1	ВО	function
CR0	0	0	0	0	0	Α/μ	_	PDN ALL	_	_	SA,VF_ OUT	SAO/ VFRO	SA,VF_ PDN	
CR1	0	0	0	0	1	TX ON/ OFF	RX ON/ OFF	ADPCM RST	TX MUTE	RX MUTE	MLV2	MLV1	MLV0	
CR2	0	0	0	1	0	TX GAIN3	TX GAIN2	TX GAIN1	TX GAIN0	RX GAIN3	RX GAIN2	RX GAIN1	RX GAIN0	ADPCM control
CR3	0	0	0	1	1	S_ TONE2	S_ TONE1	S_ TONE0	T ON/ OFF	Tone G3	Tone G2	Tone G1	Tone G0	
CR4	0	0	1	0	0	DTMF/ OT	TONE_ SEND	TONE5	TONE4	TONE3	TONE2	TONE1	TONE0	
CR5	0	0	1	0	1	SEND/ REC	ROM/ SR	4M8M/ 1M	_	_	_	CMD1	CMD0	
CR6	0	0	1	1	0	VOX ON/OFF	ON LVL1	ON LVL0	OFF TIME	VOX IN	RX_N SEL	N_ LV1	N_ LV0	
CR7	0	0	1	1	1	VOX OUT	Silence L1	Silence L0	_	_	_	BUSY	RPM	
CR8	0	1	0	0	0	ST0	ST1	ST2	ST3	ST4	ST5	ST6	ST7	VOX play
CR9	0	1	0	0	1	ST8	ST9	ST10	ST11	ST12	_	_	_	mode control
CR10	0	1	0	1	0	SPY0	SPY1	SPY2	SPY3	SPY4	SPY5	SPY6	SPY7	Control
CR11	0	1	0	1	1	SP0	SP1	SP2	SP3	SP4	SP5	SP6	SP7	
CR12	0	1	1	0	0	SP8	SP9	SP10	SP11	SP12	_	_	_	
CR13	0	1	1	0	1	CH0	CH1	CH2	СНЗ	CH4	_	ADRD	ADWT	
CR14	0	1	1	1	0	_	TXC SEL	MOD OFF	IFSEL		_	_	_	
CR15	0	1	1	1	1	Ich GAIN3	Ich GAIN2	Ich GAIN1	Ich GAINO	Qch GAIN3	Qch GAIN2	Qch GAIN1	Qch GAINO	
CR16	1	0	0	0	0	Ich Offset4	Ich Offset3	Ich Offset2	Ich Offset1	Ich Offset0	_	_	_	MODEM control
CR17	1	0	0	0	1	Qch Offset4	Qch Offset3	Qch Offset2	Qch Offset1	Qch Offset0	_	_	_	
CR18	1	0	0	1	0	MODEM TEST3	MODEM TEST2	MODEM TEST1	MODEM TEST0	Local INV1	Local INV0	_	_	
CR19	1	0	0	1	1	AD07	AD06	AD05	ADO4	AD03	AD02	AD01	AD00	RSSI A/D
CR20	1	0	1	0	0	AD Offset4	AD Offset3	AD Offset2	AD Offset1	AD Offset0	_	RS PDN	_	control
CR21	1	0	1	0	1	_	_	_	_	_	_	R01	R00	General I/O
CR22	1	0	1	1	0	SW1 CONT	SW2 CONT	SW3 CONT	SW4/5 CONT	AOUT PDN	TOUT3 CONT	TOUT2 CONT	TOUT1 CONT	Switches control

(RSSI-ADC)

RSSI, RSGAIN

RSSI input and level adjustment.

RSSI is connected to the inverting input pin of the internal amplifier. RSGAIN is connected to the output pin of the amplifier.

Adjust the gain and DC so that the signal amplitude is between 0.7 V and 2.1 V on the RSGAIN pin. See Fig. 7 for connection.

Gain:
$$A = R2/R1 = 1.4/$$
 (Vmax - Vmin)
if $R1 + R2 \ge 20 \text{ k}\Omega$

DC adjustment value : $Vadj = A/(1+A) \times ((Vmax + Vmin)/2 - 1.4)$

Set the register CR20 to the DC adjustment value nearest to Vadj.

See the control register map (CR20) for setup values.

SGRS

Internal reference voltage output for the RSSI - ADC.

The output voltage is 2.0 V. Insert an approx. $0.1~\mu F$ bypass capacitor between this pin and the AGM pin.

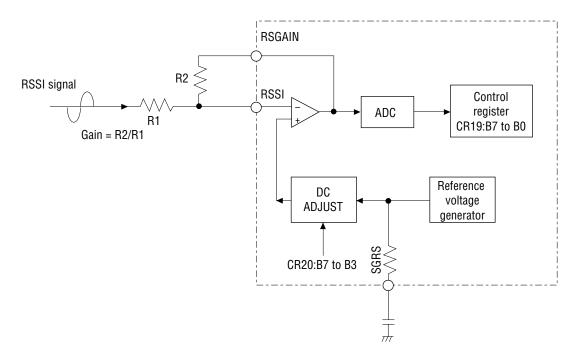


Figure 7 RSSI-ADC Interface

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	_	-0.3 to +5	V
Analog Input Voltage	V _{AIN}	_	-0.3 to V _{DD} + 0.3	V
Digital Input Voltage	V _{DIN}	_	-0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{STG}	_	−55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

	Parameter	Symbol	Conditon		Min.	Тур.	Max.	Unit
Powe	er Supply Voltage	V_{DD}	_		2.7	_	3.6	V
Oper	ating Temperature Range	Ta			-25	+25	+70	°C
High	Level Input Voltage	V _{IH}	Input pins fully digital		0.45 × V _{DD}	_	V _{DD}	V
Low	Level Input Voltage	V _{IL}	Input pins fully digital		0	_	0.16 × V _{DD}	V
Digit	al Input Rise Time	t _{lr}	Input pins fully digital		_	_	50	ns
Digit	al Input Fall Time	t _{lf}	Input pins fully digital		_		50	ns
Dinit	al Outrout I and	R _{DL}	IS (Pull-up resistor)		500	_	_	Ω
Digit	al Output Load	C _{DL}	Input pins fully digital		_	_	100	pF
Вура	ss Capacitor for SG	C _{SG1}	Between SGCT/R and A	GC	10 + 0.1	_	_	μF
Вура	ss Capacitor for SG	C _{SG2}	Between SGM, AGM ar AGM	nd SGRS,	0.1	_	_	μF
Mast	er Clock Frequency	F _{MCK}	MCK		_	19.2	_	MHz
Mast	er Clock Duty Ratio	D _{MCK}	MCK		40	50	60	%
	Modulator Side Input	F _{TXC1}	TXCI (When CR14 - B6	i = "0")	_	384	_	kHz
⊭	Frequency	F _{TXC2}	TXCI (When CR14 - B6	i = "1")	_	3.84	_	MHz
'n	Clock Duty Ratio	D _{CKM}	TXCI, EXCK		40	50	60	%
Modem Unit	IF Input Duty Ratio	D _{CIF}	IFIN		45	50	55	%
Ĭ	Transmit Sync Pulse	t _{XSM} , t _{SXM}	$TXCI \leftrightarrow TXW$	Fig 10	_	_	200	ns
	Setting Time	t _{DSM} , t _{DHM}	$TXCI {\longleftrightarrow} TXD$	Fig.10	_		200	ns
	Bit Clock Frequency	F _{BCK}	BCLK		64		2048	kHz
	Synchronous Signal Frequency	F _{SYNC}	SYNC, SYNC		_	8.0	_	kHz
⊭	Clock Duty Ratio	D _{CKC}	BCLK, EXCK		40	50	60	%
n C	Transmit Sync Pulse Setting Time	t _{XSC,} t _{SXC}	BCLK↔SYNC		100	_	_	ns
CODEC Unit	Receive Sync Pulse Setting Time	t _{RSC,} t _{SRC}	BCLK↔SYNC		100			ns
2	Synchronous Signal Width	t _{WSC}	XSYNC, SYNC	Fig.8	1 BCLK	_	125μs-1BCLK	μs
	PCM, ADPCM Setup Time	t _{DSC}	_		100	_	_	ns
	PCM, ADPCM Hold Time	t _{DHC}			100	_	_	ns

ELECTRICAL CHARACTERISTICS

DC Characteristics

		(*DL	-			
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	I _{DD1}	Mode A (When V _{DD} = 3.0 V)	_	0.03	0.1	mA
Power Supply Current (Modem)	I_{DD2}	Mode B (When V _{DD} = 3.0 V)	_	4.5	10.0	mA
(When CODEC is in a	I_{DD3}	Mode C (When V _{DD} = 3.0 V)	_	4.5	10.0	mA
Power Down State)	I_{DD4}	Mode D (When $V_{DD} = 3.0 \text{ V}$)	_	10.5	22.0	mA
1 ovor bown outer,	I_{DD5}	Mode E (When V _{DD} = 3.0 V)	_	8.5	18.0	mA
	I _{DD6}	Mode F (When V _{DD} = 3.0 V)	_	13.0	27.0	mA
D (00DE0)	I _{DD7}	When operating*	_	7.0	15.0	mA
Power Supply Current (CODEC)	I_{DD8}	(When no signal, and $V_{DD} = 3.0 \text{ V}$)	_	11.0	18.0	mA
(When Modem is in a Power Down State)	I _{DD9}	When powered down (When $V_{DD} = 3.0 \text{ V}$)	_	0.03	0.1	mA
Power Supply Current (RSSI-ADC)	I _{DD10}	CR22-B3 = "1" (When V _{DD} = 3.0 V)	_	2.0	4.0	mA
Input Leakage Current	I _{IH}	$V_I = V_{DD}$	_	_	2.0	μΑ
IIIput Leakaye Guireiit	I _{IL}	V _I = 0 V	_	_	0.5	μΑ
High Level Output Voltage	V _{OH1}	I _{OH} = 0.4 mA	$0.5 \times V_{DD}$	_	V_{DD}	V
Thigh Level Output voltage	V _{OH2}	I _{OH} = 1 μA	$0.8 \times V_{DD}$	_	V_{DD}	V
Low Level Output Voltage	V _{OL}	$I_{OL} = -1.2 \text{ mA}$ (IS pin is pulled up with 500 Ω resistor)	0	0.2	0.4	V
Output Leakage Current	I ₀	IS pin	_	_	10	μΑ
Input Capacitance	C _{IN}	_	_	5		pF

^{*} I_{DD7} applies when CRC0 - B0 = "0" and CR22 - B3 = "0"; I_{DD8} applies when operating in other conditions.

Analog Interface Characteristics (RSSI - ADC)

 $(V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Resistance	R _{INAD}	RSSI	10	_	_	MΩ
Output Resistance Load	R _{LCAD}	RSGAIN	10	_	_	kΩ
Output Capacitance Load	C _{LAD}	RSGAIN	_	_	_	pF
Input Voltage Range	V _{INAD}	When a RSGAIN signal is output.	0.7	_	2.1	V
Offset Voltage Adjust Range	O _{VLAD}	_	-600	_	+640	mV
Offset Voltage Adjust Accuracy	O _{VSAD}	When offset voltage is adjusted per LSB step.	-20	_	+20	mV
A/D Conversion Resolution	R _{ESAD}	One LSB step	_	5.5	_	mV

Digital Interface Characteristics (RSSI - ADC)

Parameter	Symbol	Condition	Refer- rence	Min.	Тур.	Max.	Unit
Output Delay Time	t _{DAD}	Cload = 50 pF	Fig.12	_	5	_	μS

Analog Interface Characteristics (Modem)

 $(V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

		(00		,		/
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Output Resistance Load	R _{LIQ}	I+, I-, Q+, Q-	10	_	_	kΩ
Output Capacitance Load	C _{LIQ}	I+, I-, Q+, Q-	_	_	20	pF
Output DC Voltage Level	V _{DCM}	I+, I-, Q+, Q- (TXW = 0)	1.55	1.6	1.65	٧
Output AC Voltage Level	V _{ACM}	I+, I-, Q+, Q- (For TXD = 0 continuous input)	340	360	380	mV _{PP}
Offset Voltage Difference	V _{OFF}	Difference among I+, I-, Q+ and Q-	-20	_	+20	mV
Modulator D/A Conversion Sampling Frequency	F _{SDA}	_	_	1.92	_	MHz
Modulator D/A Conversion Offset Frequency	F _{CDA}	_	_	380	_	kHz
Output DC Voltage Adjustment Level Range	D _{CVL}	_	_	±45	_	mV
Output AC Voltage Adjustment Level Range	A _{CVL}	_	_	±4	_	%
Out of hand Charteum	P600	600 kHz detuning	60	_	_	dB
Out-of-band Spectrum	P900	900 kHz detuning	65	_	_	dB
Modulation Accuracy	E _{VM}	_	_	1.0	3.0	% rms
Demodulator Side IF Input Level	I _{FV}	IFIN input level	0.5	_	V_{DD}	V _{PP}
IFIN Input Impedance	R _{IF}	DC impedance	_	20	_	kΩ
SGM Output Voltage	V _{SGM}	_		2.0		V
SGM Output Impedance	R _{SGM}	_		1.5		kΩ
SGM Warm-up Time	T _{SG}	SGM↔AGM 0.1µF (Rise Time to 90% of max. level)		3		ms
MCK Input Level	lχ		0.7	_	2.0	V_{PP}
MCK Input Impedance	R _X	DC impedance	_	20	_	kΩ

Digital Interface Characteristics (Modem)

			(00				
Parameter	Symbol	Condition	Reference	Min.	Тур.	Max.	Unit
Transmit Digital I/O Setting Time	t _{XDM1,2}	Oland FO mF	Eig 10	0	_	200	ns
Transmit Digital I/O Setting Time	t _{XDM3,4}	Cload = 50 pF	Fig. 10	0	_	400	ns
Receive Digital I/O Setting Time	t _{RDM1,2}	Cload = 50 pF	Fig. 11	0	_	200	ns

Analog Interface Characteristics (CODEC)

Powerester Comball Condition Min Tun May Unit									
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit			
Input Resistance	R _{INC}	AIN+, AIN-, PWI	10	_	_	MΩ			
	R _{LC1}	GSX	20	_	_	kΩ			
Output Resistance Load	R _{LC2}	VFRO, SAO	10		_	kΩ			
	R _{LC3}	AOUT	150	_	_	Ω			
	C _{LC1}	GSX			100	pF			
Output Capacitance Load	C _{LC2}	VFRO, SAO	_	_	100	pF			
	C _{LC3}	AOUT	_	_	100	pF			
	V _{OC1}	GSX ($R_L = 20 \text{ k}\Omega$)	_	_	1.3	V _{PP}			
Output Valtana Laval (*4)	V	VFRO, SAO			1.3	V			
Output Voltage Level (*1)	V _{OC2}	$(R_L = 10 \text{ k}\Omega)$			1.3	V _{PP}			
	V _{OC3}	AOUT ($R_L = 150 \Omega$)	_	_	1.3	V _{PP}			
0,500	V _{OFC1}	VFRO, SAO	-100	_	+100	mV			
Offset Voltage	V _{OFC2}	GSX, AOUT	-20	_	+20	mV			
SGCT, SGCR Output Voltage	V _{SGC}	SGCT, SGCR	_	1.4	_	V			
SGCT Output Impedance	R _{SGCT}	SGCT	_	40	80	kΩ			
SGCR Output Impedance	R _{SGCR}	SGCR	_	4	8	kΩ			
	_	SGCT↔AGC 10+0.1μF		700					
SGCT Warm-up Time	T _{SGCT}	(Rise time to 90% of max. level)	_	700	_	ms			
	_	SGCR↔AGC 10+0.1μF		15		ma			
SGCR Warm-up Time	T _{SGCR}	(Rise time to 90% of max. level)		15		ms			
Analog Switch OFF Resistance	R _{SWof}	SW1 to SW5	50	_	_	MΩ			
Analog Switch ON Resistance	Rswon	SW1 to SW5	50	100	200	Ω			

^{*1} $-7.7~dBm~(600~\Omega)=0~dBm0$, $+3.14~dBm0=1.30~V_{PP}~(A-law)$ $-7.7~dBm~(600~\Omega)=0~dBm0$, $+3.17~dBm0=1.30~V_{PP}~(\mu-law)$

Digital Interface Characteristics (CODEC)

Parameter	Symbol	Condition	Reference	Min.	Тур.	Max.	Unit
	t _{SDXC} , t _{SDRC}	Cload = 50 pF		0	_	200 (100)	ns
Digital Output Delay Time	t _{XDC1} , t _{RDC1}	pull-up resistor: 500 Ω	F: 0	0	_	200 (100)	ns
PCM, ADPCM Interface	t_{XDC2}, t_{RDC2}	Items in parenthesis mean Cload = 10 pF, and	Fig. 8	0	_	200 (100)	ns
	t _{XDC3} , t _{RDC3}	moun oloud - 10 pr, und		0	_	200 (100)	ns
	t _{C1}			50	_	_	ns
	t _{C2}			50	_	_	ns
	t _{C3}			50	_	_	ns
	t _{C4}			50	_	_	ns
	t _{C5}			100	_	_	ns
Serial Port Digital I/O	t _{C6}	Oland	Fig. 9	50	_	_	ns
Timing Characteristics	t _{C7}	Cload = 50 pF		50	_	_	ns
	t _{C8}			0	_	100	ns
	t _{C9}			50	_	_	ns
	t _{C10}			50	_	_	ns
	t _{C11}			0	_	50	ns
	t _{C12}			200	_	_	ns
EXCK Clock Frequency	F _{exck}	EXCK	_	_	_	10	MHz

Serial Interface Characteristics

Parameter	Symbol	Condition	Refer- rence	Min.	Тур.	Max.	Unit
Control Register Data Input	t _{CRW}	Write		_	_	200	ns
Control Register Data Input	t _{CRR}	Reset		_	_	200	ns
DUCV D:+	t _{BSR}	Rising	F: 4.F	_	_	10	μs
BUSY Bit	t _{BSH}	Active time	Fig.15	_	_	450	μS
RPM Bit	t _{RPR}	Rising		_	_	10	μS
NPIVI BIL	t _{RPF}	Falling at Stop command		_	_	135	μS

AC Characteristics (CODEC)

Dawamatan		Cond	lition		_				
Parameter	Symbol	Frequency (Hz)	Level dBm0	Min.	Тур.	Max.	Unit		
	L _{OSS} T1	0 to 60		25	_	_	dB		
	L _{OSS} T2	300 to 3 k		-0.15	_	+0.20	dB		
Transmit Frequency	L _{OSS} T3	1020	٥		Reference				
Response	L _{OSS} T4	3300	0	-0.15	_	+0.80	dB		
	L _{OSS} T5	3400		0	_	0.80	dB		
	L _{OSS} T6	3968.75		13	_	_	dB		
	L _{OSS} R1	0 to 3000		-0.15	_	+0.20	dB		
Dogojuo Fraguenou	L _{OSS} R2	1020			Reference		dB		
Receive Frequency	L _{OSS} R3	3300	0	-0.15	_	+0.80	dB		
Response	L _{OSS} R4	3400		0	_	0.80	dB		
	L _{OSS} R5	3968.75		13	_	_	dB		
	SD T1		3	35	_	_	dB		
Transmit Cianal to	SD T2		0	35	_	_	dB		
Transmit Signal to	SD T3	1020	-30	35	_	_	dB		
Distortion Ratio (*2)	SD T4		-40	28	_	_	dB		
	SD T5		-45	23	_	_	dB		
	SD R1		3	35	_	_	dB		
Donaire Cianal to	SD R2		0	35	_	_	dB		
Receive Signal to	SD R3	1020	-30	35	_	_	dB		
Distortion Ratio (*2)	SD R4		-40	28	_	_	dB		
	SD R5		-45	23	_	_	dB		
	GT T1		3	-0.2	_	+0.2	dB		
Transmit Gain	GT T2		-10		Reference		dB		
	GT T3	1020	-40	-0.2	_	+0.2	dB		
Tracking Receive Gain	GT T4		-50	-0.5	_	+0.5	dB		
	GT T5		– 55	-1.2		+1.2	dB		
	GT R1		3	-0.2	_	+0.2	dB		
	GT R2		-10		Reference		dB		
Tracking	GT R3	1020	-40	-0.2	_	+0.2	dB		
Hacking	GT R4		-50	-0.5	_	+0.5	dB		
	GT R5		- 55	-1.2	_	+1.2	dB		

^{*2} P-message filter used

MSM7584D

AC Characteristics (CODEC) (Continued)

 $(V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Cumbal		ondition	Min.	T	Max.	Unit	
Parameter	Symbol	Frequency (Hz)	Level dBm0 Other		IVIII.	Тур.	wax.	Unit
	M		AIN = SG		_	_	-68	
Idle Channel Noise (*2)	N _{IDLT}	_		_			(-75.7)	dBm0p
	N _{IDLR}	_	(*3)	_	_	_	-72	(dBmp)
							(-79.7)	
Abaqluta Laval (*4)	A _{VT}	1020	0	GSX2	0.285	0.320	0.359	Vrms
Absolute Level (*4)	A _{VR}	1020	U	VFR0	0.285	0.320	0.359	Vrms
Power Supply Noise	P _{SRRT}	Noise frequency:	Noise level:		30	_	_	dB
Rejection Ratio	P _{SRRR}	0 kHz to 50 kHz	50 mV_{PP}		30	_	_	dB

^{*2} P-message filter used

ADPCM characteristics are fully compliant with ITU-T Recommendation G.721.

AC Characteristics (DTMF and Other Tones)

 $(V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}, Ta = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	C	Condition	Min.	Тур.	Max.	Unit
Fraguency Deviation	D _{FT1}	DTMF tones	- 7	_	+7	Hz	
Frequency Deviation	D _{FT2}	Other various tones	- 7		+7	Hz	
Tama Dafawanaa	V _{TL}	Transmit side tone DTMF (low group)		-18	-16	-14	dBm0
Tone Reference	V_{TH}	(OdB when gain setting)	DTMF (high group), other	-16	-14	-12	dBm0
Output Level (*5)	V_{RL}	Receive side tone	DTMF (low group)	-10	-8	-6	dBm0
	V_{RH}	(-OdB when gain setting) DTMF (high group), other		-8	-6	-4	dBm0
DTMF Tone Level Relative Value	R _{DTMF}	VTH/VTL, VRH/VRI	L	1	2	3	dB

^{*5} Not including programmable gain set values

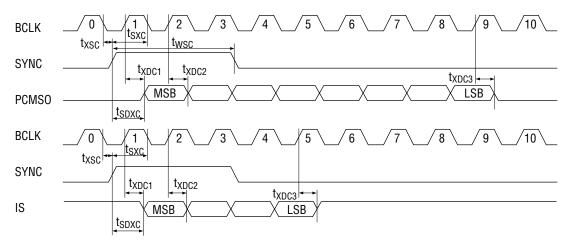
AC Characteristics (Gain Settings)

 $(V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Transmit/Receive Gain	n.	For all gain act values	4	0	. 4	٩D
Setting Accuracy	D _G	For all gain set values	-	U	+1	dB

AC Characteristics (VOX Function)

Parameter	Symbol		Min.	Тур.	Max.	Unit	
Transmit VOX	т.	Cilonos vuoiss	VOVO min. Con Fig. 0		10 ^{*6}		mo
Detection Time	T _{VXON}	Silence→voice	VOXO pin: See Fig. 2	_	10	_	ms
(Voice and Silence	т	Voice dilence	Voice/silence	1.40/200	160/320	180/340	m.
Detection Time)	IVXOF	Voice→silence	differential: 10 dB	140/300			ms
Transmit VOX		For detection	lovel est values by	-2.5	0	+2.5	
Detection Level Accuracy	D _{VX}		level set values by				dB
(Voice Detection Level)		CR6 - B6, B5					


^{*6} When single tone at 1000Hz.

^{*3} PCMRI input: "11010101" (A-law), "111111111" (μ-law)

^{*4} $0.320 \text{ Vrms} = 0 \text{ dBm0} = -7.7 \text{ dBm } (600 \Omega)$

TIMING DIAGRAM (ADPCM CODEC)

Transmit Side PCM, ADPCM Timing

Receive Side PCM, ADPCM Timing

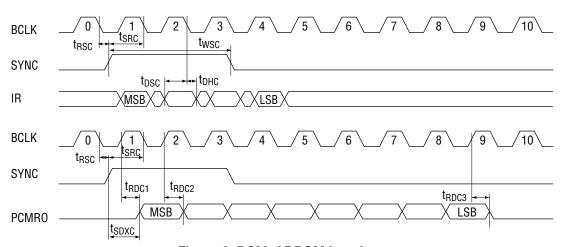


Figure 8 PCM, ADPCM Interface

Serial Port Timing for Microcontroller Interface

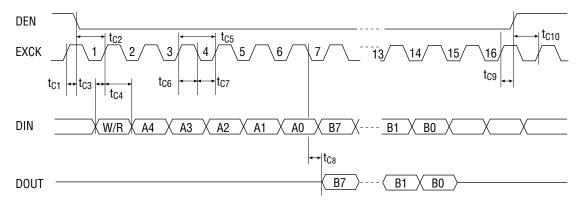
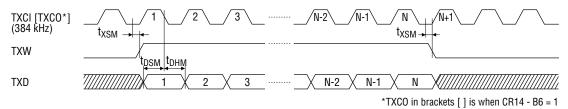
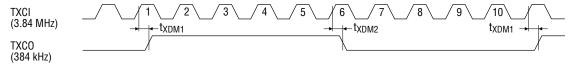



Figure 9 Serial Control Port Interface


TIMING DIAGRAM

(Modem)

Transmit Data Input Timing

Transmit Clock (TXCO) Output Timing (When CR14 - B6 = 1)

Transmit Burst Position (BSTO) Output Timing (When CR14 - B6 = 0)

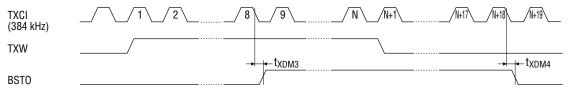


Figure 10 Modem Transmit Side (Modulator Side) Digital I/O Timing

Receive Side Data I/O Timing

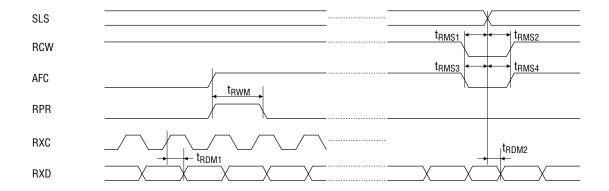
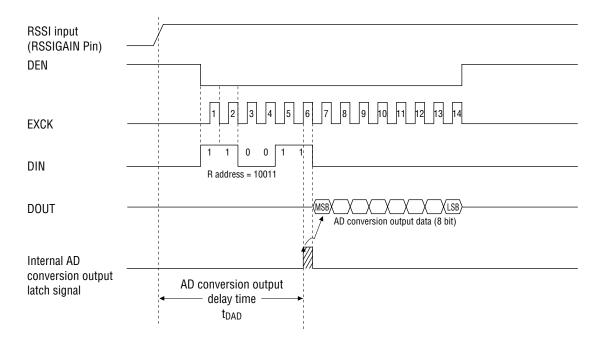
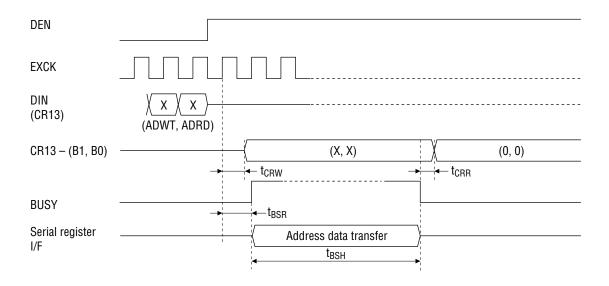



Figure 11 Receive Side (Demodulator Side) Digital I/O Timing

TIMING DIAGRAM (RSSI - ADC) RSSI - ADC Output Timing



Notes:

- 1. AD conversion output data corresponds to the RSSI analog input value between the rising edge of the 6th EXCK clock pulse and the start point of the AD conversion output delay time (t_{DAD}).
- 2. Normal AD conversion output data is output approximately 1ms after the power down mode is cancelled.

Figure 12 RSSI - ADC Output Timing

TIMING DIAGRAM (Serial Register Interface) Address Write/Read Timing

Recording/Playback Timing

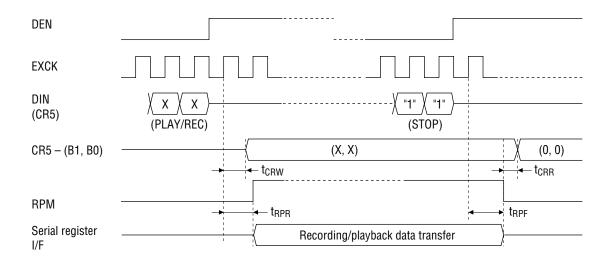


Figure 13 Serial Register Interface

Mode State Transition Time in Modem

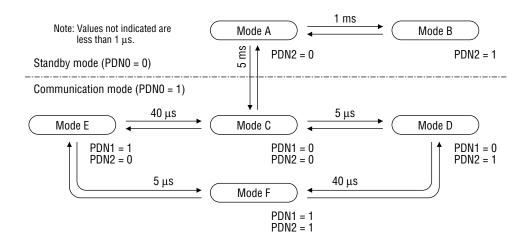


Figure 14 Transition Between Power-Down Mode and Power-ON Mode

Timing Diagram for Demodulator Control in Modem (Example)

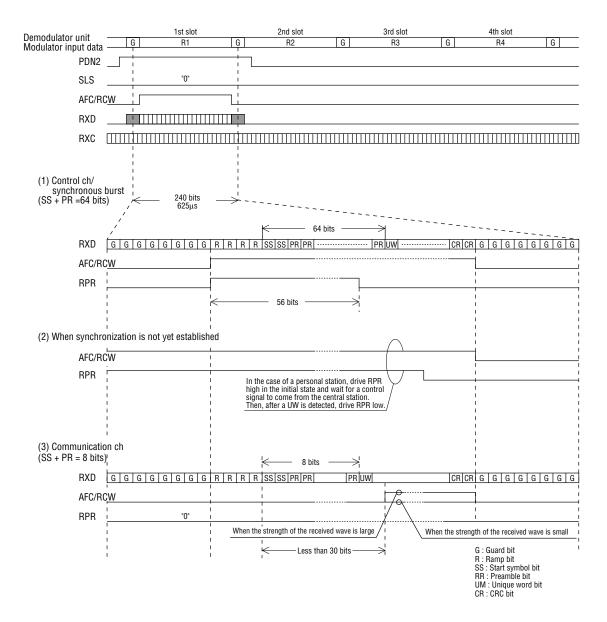


Figure 15 Modem Unit Demodulator Timing Diagram Example

FUNCTIONAL DESCRIPTION

Control Register Description Table (ADPCM CODEC)

(1) CR0 (Basic Operation Mode Settings)

	В7	В6	B5	B4	В3	B2	B1	В0
CDO	A/μ		PDN			SA, VF	CACATEDO	SA, VF
CR0	SEL	_	ALL	_	_	_ OUT	SAO/VFRO	_ PDN
Initial Value (*)	0	0	0	0	0	0	0	0

^{*} The initial value means a value which is set when the device is reset using the RESET signal.

B7:PCM interface companding selection 0: μ-law 1: A-law
B6:Not used
B5:Power down (entire unit) 0: Power ON 1: Power down
ORed with the inverting external power down signal PDN3. When using
this data, set PDN3 to "1".
B2:Output from VFRO and SAO at a time
0: Receive side output signals are output from a pin selected by B1.
1: Receive side output signals are output from VFRO and SAO at a time.
B1:Receive side output switch control
0: Receive side output signals appear on the SAO (Sounder Amplifier
Output) pin.
1: These signals appear on the VFRO (Receiver Amplifier Output) pin.
B0:Power down control for sounder output amplifier (SAO) and receiver
output amplifier (VFRO).
0: When SAO is selected by CR0 - B1, VFRO is powered down.
When VFRO is selected, SAO is powered down.
1: Both SAO and VFRO are powered ON.
B4, B3: Not used (These pins are used to test the device. They should be set to "0"

during normal operation.)

(2) CR1 (ADPCM Operation Mode Settings)

	В7	В6	B5	B4	В3	B2	B1	В0
CD4	TX	RX	ADPCM	TX	RX	MLV2 MLV1	NAL \/4	MINO
CR1	ON/OFF	ON/OFF	RESET	MUTE	MUTE		MLV0	
Initial Value	0	0	0	0	0	0	0	0

B7:Transmit side PCM signal ON/OFF. 0: ON 1: OFF

OFF: Idle channel state

B6:Receive side PCM signal ON/OFF. 0: ON 1: OFF

OFF: PCM idle pattern is transmitted.

B5:ADPCM reset (as specified by G. 721) 1: reset*

B4: Transmit side MUTE.

0: Transmit MUTE OFF.

1: Transmit MUTE ON.

Transmit output is in an idle state.

B3:.....Receive side MUTE. This bit is ORed with the external control pin RXMUTE.

- 0: Receive side MUTE OFF.
- 1: Receive side MUTE ON. The receive side output signals are attenuated by the values represented by a combination of bits B2, B1, and B0 of the CR1. (For voice path only.)
- B2, B1, B0: An attenuation value is selected at receive side MUTE (CR1 B3 = "1") (see Table 3). These bits are ORed with the external pins MLV2, MLV1, and MLV0.

Table 3 MUTE Level Settings

B2	B1	В0	Attenuation value
0	0	0	OdB loss
0	0	1	- 6dB loss
0	1	0	-12dB loss
0	1	1	-18dB loss
1	0	0	-24dB loss
1	0	1	-30dB loss
1	1	0	-36dB loss
1	1	1	MUTE (idle state)

^{*} The rest width should be 125µs or more.

(3) CR2 (PCMCODEC Operation Mode Settings and Transmit/Receive Gain Adjustment)

	В7	В6	B5	B4	В3	B2	B1	В0
CDO	TX	TX	TX	TX	RX	RX	RX	RX
CR2	GAIN3	GAIN2	GAIN1	GAIN0	GAIN3	GAIN2	GAIN1	GAIN0
Initial Value	0	0	0	0	0	0	0	0

B7, B6, B5, B4: Transmit side signal gain adjustment (see Table 4)

B3, B2, B1, B0: Receive side signal gain adjustment (see Table 4)

Table 4 Receive/Transmit Gain Settings

Transmit/ receive gain	В7	В6	B5	B4	В3	B2	B1	В0
-16dB	1	0	0	0	1	0	0	0
-14dB	1	0	0	1	1	0	0	1
-12dB	1	0	1	0	1	0	1	0
-10dB	1	0	1	1	1	0	1	1
– 8dB	1	1	0	0	1	1	0	0
- 6dB	1	1	0	1	1	1	0	1
– 4dB	1	1	1	0	1	1	1	0
– 2dB	1	1	1	1	1	1	1	1
0dB	0	0	0	0	0	0	0	0
2dB	0	0	0	1	0	0	0	1
4dB	0	0	1	0	0	0	1	0
6dB	0	0	1	1	0	0	1	1
8dB	0	1	0	0	0	1	0	0
10dB	0	1	0	1	0	1	0	1
12dB	0	1	1	0	0	1	1	0
14dB	0	1	1	1	0	1	1	1

The above gain settings table shows the transmit/receive voice signal gain settings and the transmit side gain settings for DTMF tones and other tones. Tone signal transmission is enabled by CR4 - B6 (discussed later), and the gain setting is set to the levels shown below.

DTMF tones (low group):-16 dBm0

DTMF tones (high group) and other tones: ... –14 dBm0

For example, if the transmit gain set value is set to +8 dB (B7, B6, B5, B4) = (0, 1, 0, 0), then the following tones appear at the PCMSO pin.

DTMF tones (low group):-8 dBm0

DTMF tones (high group) and other tones: ... -6 dBm0

-3 dBm0 (mixed tone)

However, the gain of the receive side tone and the gain of the side tones (path from transmit side to receive side) are set by the CR3 register.

MSM7584D

(4) CR3 (Side Tone and Tone Generator Gain Adjustment)

	В7	В6	B5	В4	В3	B2	B1	В0
CD2	Side Tone	Side Tone	Side Tone	TONE	TONE	TONE	TONE	TONE
CR3	GAIN2	GAIN1	GAIN0	ON/OFF	GAIN3	GAIN2	GAIN1	GAIN0
Initial Value	0	0	0	0	0	0	0	0

B7, B6, B5: Side tone gain adjustment (refer to Table 5)

B4: Tone generator ON/OFF 0: OFF 1: ON

B3, B2, B1, B0: . Tone generator

Receive side gain adjustment (refer to Table 6)

Table 5 Side Tone Gain Settings

B7	В6	B5	Side Tone Gain
0	0	0	OFF
0	0	1	−15 dB
0	1	0	−13 dB
0	1	1	−11 dB
1	0	0	−9 dB
1	0	1	−7 dB
1	1	0	−5 dB
1	1	1	−3 dB

Table 6 Receive Side Tone Generator Gain Settings

В3	B2	B1	В0	Tone Generator Gain	В3	B2	B1	В0	Tone Generator Gain
0	0	0	0	−32 dB	1	0	0	0	−16 dB
0	0	0	1	–30 dB	1	0	0	1	−14 dB
0	0	1	0	–28 dB	1	0	1	0	−12 dB
0	0	1	1	–26 dB	1	0	1	1	-10 dB
0	1	0	0	−24 dB	1	1	0	0	−8 dB
0	1	0	1	–22 dB	1	1	0	1	−6 dB
0	1	1	0	–20 dB	1	1	1	0	−4 dB
0	1	1	1	−18 dB	1	1	1	1	−2 dB

The receive side tone generator gain settings shown in Table 6 are set with the following levels as a reference.

DTMF tones (low group): –2 dBm0

DTMF tones (high group) and other tones: ... 0 dBm0

For example, if the tone generator gain set value is set to –6 dB (B3, B2, B1, B0)=(1, 1, 0, 1), then tones at the following levels appear at the SAO+/SAO- or VFRO pin.

DTMF tones (low group):-8 dBm0

DTMF tones (high group) and other tones: ... -6 dBm0

-3 dBm0 (mixed tone)

(5) CR4 (Tone Generator Operation Mode and Frequency Settings)

	B7	В6	B5	B4	В3	B2	B1	В0
CR4	DTMF/ OTHERS SEL	TONE SEND	TONE5	TONE4	TONE3	TONE2	TONE1	TONE0
Initial Value	0	0	0	0	0	0	0	0

B7: Selection of DTMF signal and other tones

(Stone, Ftone, Rtone, etc.) 0: Other tones 1: DTMF signal

B6: Transmission side tone transmit

0: Voice signal transmit 1: Tone transmit

B5, B4, B3, B2, B1, B0: Tone frequency setting (refer to Table 7)

Table 7 Tone Generator Frequency Settings

(a) When B7 = 1 (DTMF Tones)

B5	B4	В3	B2	B1	В0	Description	B5	B4	В3	B2	B1	В0	Description
*	*	0	0	0	0	697 Hz + 1209 Hz	*	*	0	0	0	0	852 Hz + 1209 Hz
*	*	0	0	0	1	697 Hz + 1336 Hz	*	*	0	0	0	1	852 Hz + 1336 Hz
*	*	0	0	1	0	697 Hz + 1477 Hz	*	*	0	0	1	0	852 Hz + 1477 Hz
*	*	0	0	1	1	697 Hz + 1633 Hz	*	*	0	0	1	1	852 Hz + 1633 Hz
*	*	0	1	0	0	770 Hz + 1209 Hz	*	*	0	1	0	0	941 Hz + 1209 Hz
*	*	0	1	0	1	770 Hz + 1336 Hz	*	*	0	1	0	1	941 Hz + 1336 Hz
*	*	0	1	1	0	770 Hz + 1477 Hz	*	*	0	1	1	0	941 Hz + 1477 Hz
*	*	0	1	1	1	770 Hz + 1633 Hz	*	*	0	1	1	1	941 Hz + 1633 Hz

(b) When B7 = 0 (Other than DTMF Tones)

B 5	В4	ВЗ	B2	B1	ВО	Desci	ription	В5	В4	В3	B2	В1	В0	Des	cription
0	0	0	0	0	0	400/500 Hz	8 Hz Wamble	1	0	0	0	0	0	1100 Hz	Single tone
0	0	0	0	0	1	800/1 Hz	8 Hz Wamble	1	0	0	0	0	1	1142 Hz	Single tone
0	0	0	0	1	0	400/500 Hz	16 Hz Wamble	1	0	0	0	1	0	1200 Hz	Single tone
0	0	0	0	1	1	400/1 Hz	16 Hz Wamble	1	0	0	0	1	1	1210 Hz	Single tone
0	0	0	1	0	0	667/800 Hz	16 Hz Wamble	1	0	0	1	0	0	1250 Hz	Single tone
0	0	0	1	0	1	800/1 Hz	16 Hz Wamble	1	0	0	1	0	1	1300 Hz	Single tone
0	0	0	1	1	0	1 k/1.33 kHz	16 Hz Wamble	1	0	0	1	1	0	1333 Hz	Single tone
0	0	0	1	1	1	2.7 k/1 kHz	16 Hz Wamble	1	0	0	1	1	1	1360 Hz	Single tone
0	0	1	0	0	0	2 k/2.1 kHz	16 Hz Wamble	1	0	1	0	0	0	1410 Hz	Single tone
0	0	1	0	0	1	2 k/2.7 kHz	8 Hz Wamble	1	0	1	0	0	1	1455 Hz	Single tone
0	0	1	0	1	0	2.6 k/2.7 kHz	16 Hz Wamble	1	0	1	0	1	0	1477 Hz	Single tone
0	0	1	0	1	1	3.2 k/3.31 kHz	16 Hz Wamble	1	0	1	0	1	1	1500 Hz	Single tone
0	0	1	1	0	0	400 kHz	16 Hz Wamble	1	0	1	1	0	0	3310 Hz	Single tone
0	0	1	1	0	1	2 kHz	16 Hz Wamble	1	0	1	1	0	1	1600 Hz	Single tone
0	0	1	1	1	0	2.7 kHz	16 Hz Wamble	1	0	1	1	1	0	1635 Hz	Single tone
0	0	1	1	1	1	400 kHz	10 Hz Wamble	1	0	1	1	1	1	1710 Hz	Single tone
0	1	0	0	0	0	350 + 440 kHz	Mixed tone	1	1	0	0	0	0	1800 Hz	Single tone
0	1	0	0	0	1	400 + 480 kHz	Mixed tone	1	1	0	0	0	1	1900 Hz	Single tone
0	1	0	0	1	0	480 + 620 kHz	Mixed tone	1	1	0	0	1	0	2000 Hz	Single tone
0	1	0	0	1	1	350 kHz	Single tone	1	1	0	0	1	1	2100 Hz	Single tone
0	1	0	1	0	0	400 kHz	Single tone	1	1	0	1	0	0	2200 Hz	Single tone
0	1	0	1	0	1	440 kHz	Single tone	1	1	0	1	0	1	2285 Hz	Single tone
0	1	0	1	1	0	480 kHz	Single tone	1	1	0	1	1	0	2400 Hz	Single tone
0	1	0	1	1	1	500 kHz	Single tone	1	1	0	1	1	1	2500 Hz	Single tone
0	1	1	0	0	0	533 kHz	Single tone	1	1	1	0	0	0	2600 Hz	Single tone
0	1	1	0	0	1	571 kHz	Single tone	1	1	1	0	0	1	2670 Hz	Single tone
0	1	1	0	1	0	620 kHz	Single tone	1	1	1	0	1	0	2700 Hz	Single tone
0	1	1	0	1	1	667 kHz	Single tone	1	1	1	0	1	1	2820 Hz	Single tone
0	1	1	1	0	0	727 kHz	Single tone	1	1	1	1	0	0	2910 Hz	Single tone
0	1	1	1	0	1	800 kHz	Single tone	1	1	1	1	0	1	3000 Hz	Single tone
0	1	1	1	1	0	888 kHz	Single tone	1	1	1	1	1	0	3110 Hz	Single tone
0	1	1	1	1	1	1000 kHz	Single tone	1	1	1	1	1	1	3200 Hz	Single tone

(6) CR5 (Control of Serial Register I/F)

	В7	В6	B5	B4	В3	B2	B1	В0
CR5	SEND/ REC	ROM/ SR	4M8M/ 1M	_	_	_	CMD1	CMD0
Initial Value	0	0	0	0	0	0	0	0

B7: Register I/F connection.

0: Connection with ADPCM receiver

1: Connection with ADPCM transmitter

B6:Switching between voice ROM and serial register.

0: Serial register

1: Voice ROM

B5:Capacitance of serial register to be connected.

0: 1 Mbit (MSM6389)

1: 4 Mbit (MSM6684), 8 Mbit (MSM6685)

B1, B0: Serial register I/F command (CMD1, CMD0) =

(0.0): NOP

(0.1): PLAY

(1.0): REC (RECORD)

(1. 1): STOP

Note: CMD1 and CMD0 are reset to "0" after the instruction is executed.

The PLAY and REC instructions must not be executed when BUSY (CR5 - B1) and RPM $\,$

(CR5 - B0) are set to "1".

(7) CR6 (VOX Function Control)

	В7	В6	B5	B4	В3	B2	B1	В0
CDC	VOX	ON	ON	OFF	VOX	RX NOISE	RX NOISE	RX NOISE
CR6	ON/OFF	LVL1	LVL0	TIME	IN	LEVEL SEL	LVL1	LVL0
Initial Value	0	0	0	0	0	0	0	0

B7:VOX function ON/OFF

0: OFF

1: ON

B6, B5: Transmit side voice/silence detector level settings (at 1000Hz)

(0,0): -20 dBm0

(0,1): -25 dBm0

(1,0): -30 dBm0

(1,1): –35 dBm0

B4: Hangover time (refer to Fig. 2) settings

0: 160 ms 1: 32

1: 320 ms

B3: Receive side VOX input signal

0: Internal background noise transmit 1: Voice receive signal transmit When using this data, set the VOXI pin to "0".

B2: Receive side background noise level setting

0: Internal automatic setting

1: Externa setting (by B1, B0)

Internal automatic setting \rightarrow Sets to the voice signal level when B3 (VOXI) changes from "1" to "0".

B1, B0: External setting background noise level

(0,0): No noise

(0,1): -45 dBm0

(1,0): -35 dBm0

(1,1): -25 dBm0

(8) CR7 (Detect Register: Read-only)

	В7	В6	B 5	B4	В3	B2	B1	В0
CD7	VOX	Silent Level	Silent Level				BUSY	RPM
CR7	OUT	1	0	_	_	_	BUS 1	KPIVI
Initial Value	0	0	0	0	0	0	0	0

B7: Transmit side voice/silence detection

0: Silence 1: Voice

B6, B5: Transmit side silence level (indicator)

(0,0):Below -60 dBm0

(0,1): -50 to -60 dBm0

(1,0): -40 to -50 dBm0

(1,1): Above –40 dBm0

Note: These outputs are enabled when the VOX function is turned ON by CR6 - B7.

B4 - B2: Not used

B1: Serial register I/F monitoring.

This bit monitors the Read and Write of addresses at the serial

register I/F.

0: Stop

1: Reading or Writing

B0: Monitors serial register recording and playback.

0: Stop 1: Recording or Playing back

(9) CR8 (Start X-address 0 to 7)

	В7	В6	B5	B4	В3	B2	B1	В0
CR8	ST0	ST1	ST2	ST3	ST4	ST5	ST6	ST7
Initial Value	0	0	0	0	0	0	0	0

CR9 (Start X-address 8 to 12)

	В7	В6	B5	B4	В3	B2	B1	В0
CR9	ST8	ST9	ST10	ST11	ST12	_	_	_
Initial Value	0	0	0	0	0	0	0	0

CR8 (B7 to B0), CR9 (B7 to B3): Recording/playback start X-address storage register

(10) CR10 (Start Y-address 0 to 7)

	B7	В6	B5	B4	В3	B2	B1	В0
CR10	SPY0	SPY1	SPY2	SPY3	SPY4	SPY5	SPY6	SPY7
Initial Value	0	0	0	0	0	0	0	0

CR10 (B7 to B0): Recording/playback stop Y-address storage register

(11) CR11 (Stop X-address 0 to 7)

	B7	В6	B5	B4	В3	B2	B1	В0
CR11	SP0	SP1	SP2	SP3	SP4	SP5	SP6	SP7
Initial Value	0	0	0	0	0	0	0	0

CR12 (Stop X-address 8 to 12)

	В7	В6	B5	B4	В3	B2	B1	В0
CR12	SP8	SP9	SP10	SP11	SP12	_	_	_
Initial Value	0	0	0	0	0	0	0	0

CR11 (B7 to B0), CR12 (B7 to B3): Recording/playback stop X-address storage register

(12) CR13 (Channel Selection)

	В7	В6	B5	B4	В3	B2	B1	В0
CR13	CH0	CH1	CH2	CH3	CH4	_	ADRD	ADWT
Initial Value	0	0	0	0	0	0	0	0

B7 - B3: Channel selection (all 32 channels are selected by HEX code)

B2: Not used

B1: Address Read instruction

0: NOP

1: When "1" is written in this bit, the start/stop addresses corresponding to the channels specified by B7 - B3 are transferred from the channel index area of the serial register to CR8 - CR12. These bits are reset to "0"s after the addresses are transferred.

B0: Address write instruction

0: NOP

1: When "1" is written in this bit, the start/stop address corresponding to the channel specified by B7-B3 is transfered from CR8-12 to the channel index area of the serial register.

These bits are reset to "0"s after the addresses are transferred.

Note: When BUSY (CR7 - B1) and RPM (CR7 - B0) are set to "1", writing to ADRD and ADWT is not allowed.

(Modem)

(13) CR14 (Basic Operation Mode Setting)

	В7	В6	B5	B4	В3	B2	B1	В0
CD14		TXC		IECEI			TEOT4	TECTO
CR14	_	SEL	OFF	IFSEL	_	_	TEST1	TEST0
Initial Value	0	0	0	0	0	0	0	0

B7, B3, B2: Not used

B6: Transmission timing clock selection

0: TXCI input: 384 kHz TXCO output: APLL 384 kHz output Transmit data TXD is input synchronously with the rising edge of TXCI. APLL is ON.

1: TXCI input: 3.84 MHz

TXCO output: 384 kHz (TXCI

divided by 10)

Transmit data TXD is input synchronously with the rising edge of

TXCO. APLL is OFF.
B5: Modulation OFF/ON control

0: Modulation ON

1: Modulation OFF (fixed phase)

B4: Receive side input IF frequency selection

0: 1.2 MHz

1: 10.8 MHz

B1, B0: Device test control bits

These bits should be set to "0" for normal use.

(14) CR15 (I and Q Gain Adjustment)

	В7	В6	B5	B4	В3	B2	B1	В0
CR15	lch	lch	lch	lch	Qch	Qch	Qch	RX Qch
UNIO	GAIN3	GAIN2	GAIN1	GAIN0	GAIN3	GAIN2	GAIN1	GAIN0
Initial Value	0	0	0	0	0	0	0	0

B7 - B4:I+ and I- output gain setting: 3 mV steps (refer to Table 8)

B3 - B0:Q+ and Q- output gain setting: 3 mV steps (refer to Table 8)

Table 8 I and Q Channel Amplitude Value

CR1 - B7	В6	B5	B4	Description
CR1 - B3	B2	B1	В0	Description
0	1	1	1	Amplitude Value : 1.042 (Reference Value)
0	1	1	0	1.036
0	1	0	1	1.030
0	1	0	0	1.024
0	0	1	1	1.018
0	0	1	0	1.012
0	0	0	1	1.006
0	0	0	0	1.000 (Reference Value)
0	1	1	1	0.994
0	1	1	0	0.988
0	1	0	1	0.982
0	1	0	0	0.976
0	0	1	1	0.970
0	0	1	0	0.964
0	0	0	1	0.958
0	0	0	0	0.952

(15) CR16 (I– Output Offset Voltage Adjustment)

	В7	В6	B5	B4	В3	B2	B1	В0
CD16	lch	lch	lch	lch	lch			
CR16	Offset4	Offset3	Offset2	Offset1	Offset0	_	_	_
Initial Value	0	0	0	0	0	0	0	0

B7 - B3:I– output pin offset voltage adjustment (refer to Table 9)

B2 - B0: Not used

(16) CR17 (Q- Output Offset Voltage Adjustment)

	В7	В6	B5	B4	В3	B2	B1	В0
CR17	Qch	Qch	Qch	Qch	Qch			
UNI/	Offset4	Offset3	Offset2	Offset1	Offset0		B1 - 0	
Initial Value	0	0	0	0	0	0	0	0

B7 - B3:Q- output pin offset voltage adjustment (refer to Table 9)

B2 - B0: Not used

Table 9 Ich and Qch Offset Adjustment Values

CR11 - B7	B 6	B5	B4	В3	Offset Voltage	CR11 - B7	B 6	B5	B4	В3	Offset Voltage
CR12 - B7	B 6	B5	B 4	ВЗ	(mV)	CR12 - B7	В6	B5	B4	ВЗ	(mV)
0	1	1	1	1	+45	1	1	1	1	1	-3
0	1	1	1	0	+42	1	1	1	1	0	-6
0	1	1	0	1	+39	1	1	1	0	1	-9
0	1	1	0	0	+36	1	1	1	0	0	–12
0	1	0	1	1	+33	1	1	0	1	1	–1 5
0	1	0	1	0	+30	1	1	0	1	0	-18
0	1	0	0	1	+27	1	1	0	0	1	-21
0	1	0	0	0	+24	1	1	0	0	0	-24
0	0	1	1	1	+21	1	0	1	1	1	-27
0	0	1	1	0	+18	1	0	1	1	0	-30
0	0	1	0	1	+15	1	0	1	0	1	-33
0	0	1	0	0	+12	1	0	1	0	0	-36
0	0	0	1	1	+9	1	0	0	1	1	-39
0	0	0	1	0	+6	1	0	0	1	0	-42
0	0	0	0	1	+3	1	0	0	0	1	-45
0	0	0	0	0	0	1	0	0	0	0	-48

(17) CR18

	В7	В6	B5	B4	В3	B2	B1	В0
CD10					LOCAL LOCAL			
CR18	_	_	_	_	INV1	INV0	_	_
Initial Value	0	0	0	0	0	0	0	0

B7 - B4: Not used

B3, B2:Local inversion mode setting bits

(These bits are used when the demodulator side IF input is phase inverted in the system configuration)

(0, 0): Normal mode

(1, 1): Local inversion mode

B1, B0:Not used

(18) CR19

	В7	В6	B5	B4	В3	B2	B1	В0
CR19	AD07	ADO6	ADO5	ADO4	ADO3	ADO2	ADO1	AD00
Initial Value	0	0	0	0	0	0	0	0

B7 - B0: 8bit output data from the RSSI-AD converter is written. The output results are listed in Table 10.

Table 10

BBBBBBB	RSGAIN pin				
76543210	voltage (V)				
11111111	0.7000				
11111110	0.7055				
to	to				
10000001	1.3945				
10000000	1.4000				
01111111	1.4055				
to	to				
00000001	2.0945				
00000000	2.1000				

MSM7584D

(19) CR20 (SRRI-ADC Offset Voltage Adjustment)

	В7	В6	B5	B4	В3	B2	B1	В0
0000	AD	AD	AD	AD	AD		RS	
CR20	Offset4	Offset3	Offset2	Offset1	Offset0	_	PDN	_
Initial Value	0	0	0	0	0	0	0	0

B7 - B3:RSGAIN pin DC adjustment value (Table 11)

Table 11

	C	CR2	0		Adjustment Value	CR20			Adjustment Value		
В7	В6	В5	B4	ВЗ	(mV)	В7	В6	В5	B4	В3	(mV)
0	1	1	1	1	600	1	1	1	1	1	-40
0	1	1	1	0	560	1	1	1	1	0	-80
0	1	1	0	1	520	1	1	1	0	1	-120
0	1	1	0	0	480	1	1	1	0	0	-160
0	1	0	1	1	440	1	1	0	1	1	-200
0	1	0	1	0	400	1	1	0	1	0	-240
0	1	0	0	1	360	1	1	0	0	1	-280
0	1	0	0	0	320	1	1	0	0	0	-320
0	0	1	1	1	280	1	0	1	1	1	-360
0	0	1	1	0	240	1	0	1	1	0	-400
0	0	1	0	1	200	1	0	1	0	1	-440
0	0	1	0	0	160	1	0	1	0	0	-480
0	0	0	1	1	120	1	0	0	1	1	-520
0	0	0	1	0	80	1	0	0	1	0	-560
0	0	0	0	1	40	1	0	0	0	1	-600
0	0	0	0	0	0	1	0	0	0	0	-640

B1:.....RSSI - ADC power down control

0: Power down

1: Power ON

B2, B0:Not used

(20) CR21 (General I/O)

	В7	В6	B5	B4	В3	B2	B1	В0
CR21	_	_	_	_	_	_	R01	R00
Initial Value	0	0	0	0	0	0	0	0

B7 - B2: Not used

B1 - B0: Data written in B1 and B0 is output to the RO1 and RO0 pins.

(21) CR22 (Control of Switches)

	В7	В6	B5	B4	В3	B2	B1	В0
0000	SW1	SW2	SW3	SW4/5	AOUT	AOUT3	AOUT2	AOUT1
CR22	CONT	CONT	CONT	CONT	PDN	CONT	CONT	CONT
Initial Value	0	0	0	0	0	0	0	0

B7, B6:SW1, SW2 control

0: Open 1: Closed

B5:SW3 control

0: Open 1: Closed

B4: SW4/5 control

0: SW4 open, SW5 closed

1: SW4 closed, SW5 open

B3: Sounder amplifier power down control

0: Power ON

1: Power down

B2, B1, B0: TOUT3 - 1 control

0: TOUT3 - 1 disabled

1: TOUT3 - 1 enabled

Note: Set the unused bits of CR0 - CR22 to "0".

DATA CONFIGURATION IN THE EXTERNAL SERIAL REGISTER

X Address Space

The address space of the external serial register is accessed based on (word direction indicated by the X address) \times (1 Kb depth in Y direction). The maximum X address in word direction depends on the total memory capacity of serial registers connected. Since the leading 32 words (32 Kb) of the serial register are used as the channel index area, X address 020h onward can be used as the voice data area.

CR5-B5	0	1	1
Total Memory Capacity (device name)	1 Mb (MSM6389)	4 Mb (MSM6684)	8 Mb (MSM6685)
Number of words	1K words	4K words	8K words
X address*	000h to 3FFh	0000h to 0FFFh	0000h to 1FFFh

^{* 0000}h to 001Fh are used as the channel index area.

Y Address Space

For 1 Kb ADPCM data in Y direction, 4 bits \times 256 samples = 1024 bits are stored in the 1 Kb memory area. One Y address is allocated to one sample (4 bits) of ADPCM data and addressing is made with 00h to FFh.

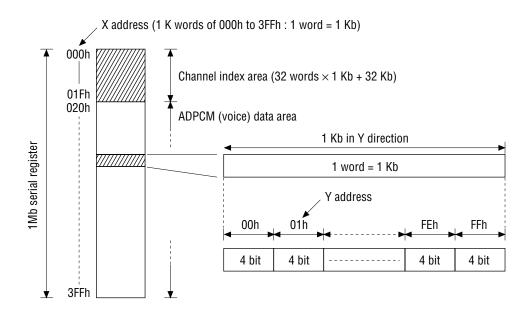


Figure 16 Address Space of 1 Mb Serial Register

MSM7584D

Channel Index Area of the Serial Register

One channel (1 Kb) of the channel index area consists of the 40 bits of address data.

- (1) Stop Y address
 - The Y address is represented by 8 bits and addressing is made with 00h to FFh.
- (2) Start X address, stop X address

The X address is represented by 16 bits (valid 13 bits). If, for example, the serial register is 1Mb, the 1K-word X address space is addressed with 000h to 3FFh.

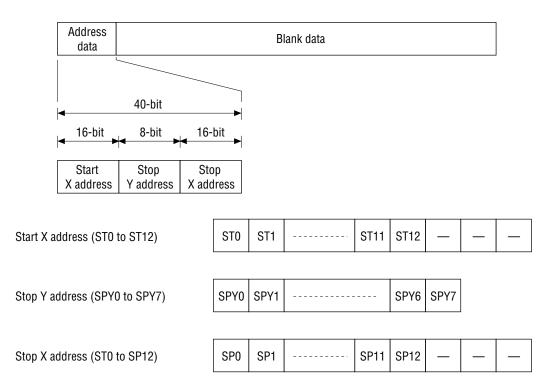


Figure 17 Channel Index Area of Serial Register

METHODS OF RECORDING AND PLAYBACK

Recording Method (See the flow chart in Figure 18)

- (1) Set up the connection between the serial register/voice ROM and ADPCM transmit-receive system. (See Figure 20) (CR5 B7)
 - Specify the serial register/voice ROM. (CR5 B6)
 - Set the external capacity. (CR5 B5)
 - Set the NOP command. (CR5 B1 = "0", B0 = "0")
- (2) Set the start/stop address. (CR8 to CR12)
- (3) Set the channel. (CR13 B7 to B3)
 - Set the ADWT (address write) instruction. (CR13
 B1 = "0", B0 = "1")
- (4) The start/stop address of the channel set by the ADWT instruction is stored in the channel index area. When status register BUSY (CR7 B1) changes from "1" to "0", storage is complete.
- (5) Start recording by setting the REC (recording) command (CR5 B1 = "1", B0 = "0").
- (6) Check the recording start with the status register RPM bit (CR7 B0 = "1").
- (7) To interrupt during recording, set the STOP (stop) command (CR5 B1 = "1", B0 = "1"). In this case, to store the address counter contents in the channel index area as a new stop address, the following settings are required:
 - Set the channel.
 - Set the ADWT instruction.
 - When the BUSY bit changes from "1" to "0", settings are complete.
- (8) When the address counter reaches the stop address, recording is complete. Check completion of recording with RPM bit = "0".

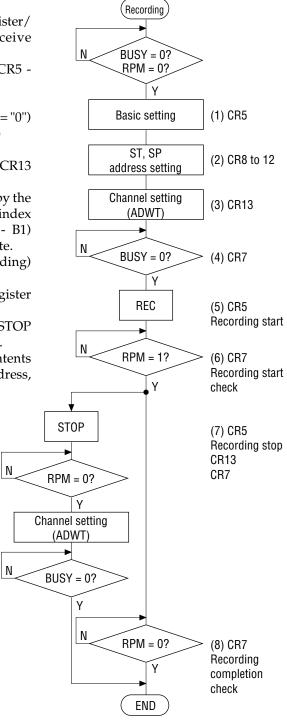


Figure 18 Flow Chart of Recording

Playback Method (See the flow chart in Figure 19)

- (1) Set up the connection between the serial register/voice ROM and ADPCM transmit-receive system. (See Figure 20) (CR5 -B7)
 - Specify the serial register/voice ROM. (CR5 - B6)
 - Set the external capacity. (CR5 -B5)
 - Set the NOP command. (CR5 B1 = "0", B0 = "0")
- (2) Set the channel. (CR13 B7 to B3)
 - Set the ADRD (address read) instruction. (CR13 - B1 = "1", B0 = "0")
- (3) The start/stop address of the channel set by the ADRD instruction is fetched from the channel index area.
 - When status register BUSY (CR7 B1) changes from "1" to "0", fetching is complete.
- (4) Start playback by setting the PLAY (playback) command (CR5 B1 = "0", B0 = "1").
- (5) Check the playback start with the status register RPM bit (CR7 B0 = "1").
- (6) To stop playback set the STOP command (CR5 B1 = "1", B0 = "1").
- (7) When the address counter reaches the stop address, playback is complete. Check completion of playback with RPM bit = "0".

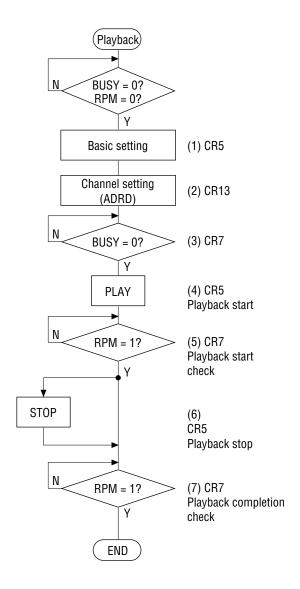


Figure 19 Flow Chart of Playback

SIGNAL FLOW IN RECORDING/PLAYBACK

When the serial register is connected to each ADPCM transmitter and receiver, the flow of recording/playback signal is as follows:

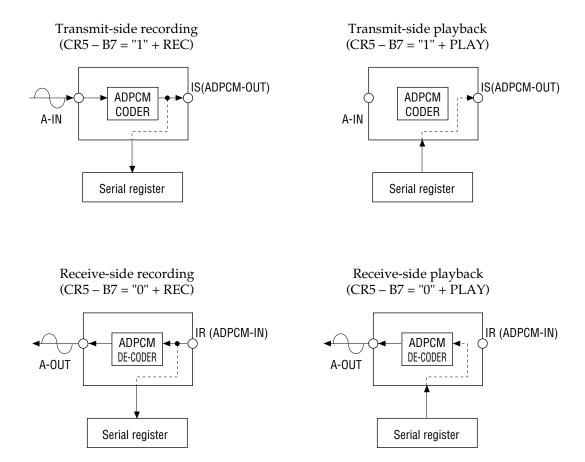
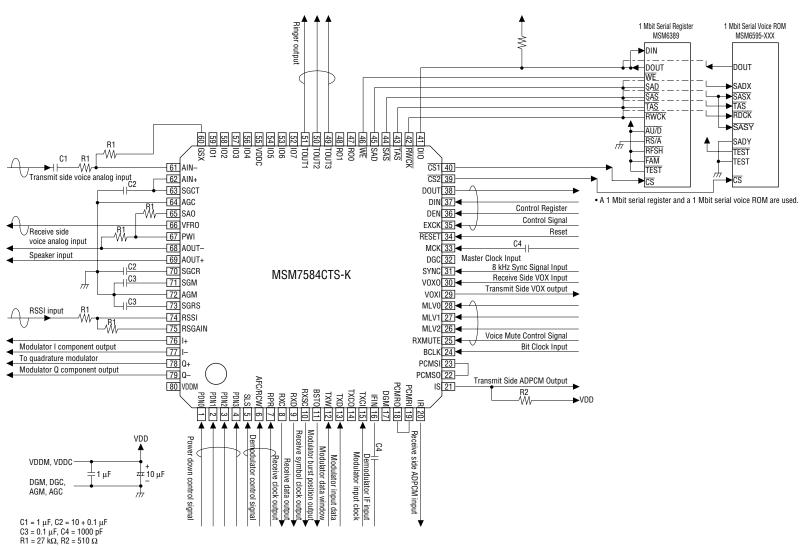
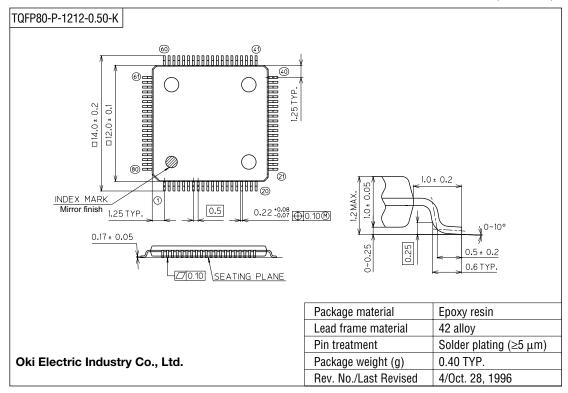



Figure 20 Signal Flow in Transmit/Receive Side Recording/Playback


FEDL7584D-02

APPLICATION CIRCUIT

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2001 Oki Electric Industry Co., Ltd.