GENERAL DESCRIPTION

The MSM7582B are CMOS ICs for the $\pi / 4$ shift QPSK modem developed for the digital cordless telephone systems.
The devices are designed for Personal and Cell station applications.

FEATURES

- Single Power Supply ($\mathrm{V}_{\mathrm{DD}}: 2.7 \mathrm{~V}$ to 3.6 V)
(Modulator Block)
- Built-in Root Nyquist Filter for Baseband Limiting (50\% Roll-off)
- Ramp Bit for Burst Signal Rise-up: 2.0 symbols
- Ramp Bit for Burst Signal Fall-down: 2.0 symbols
- Built-in D/A converters for Analog Output of Quadrature Signal I/Q Components and Power Envelope Output $\sqrt{I^{2}+Q^{2}}$
- Differential I/Q Analog output format
- I/Q Output DC Offset / Gain Adjustable
(Demodulator Block)
- Full Digital System, $\pi / 4$ shift QPSK Demodulation
- Input IF signal Frequency Selectable: 1.2/10.7/10.75/10.8 MHz
- Built-in Clock Recovery: 4 Circuits useful for Cell station
(Common)
- Various Power-down Modes: Tramsmit/Receive Independant
- Built-in Precise Analog Voltage Reference
- MCU Serial Interface for Mode setting and Built-in Test circuit
- Test Modes: Eye pattern / AFC Compensating Signal / Phase Detection Signal, possible to monitor
- Transmission Speed: 384 kbps
- Low Power consumption

Operating mode : 15 mA Typ. / Modulator $\left(\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}\right)$: 9 mA Typ. / Demodulator ($\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)
Whole system Power-down mode: 0.01 mA Typ. $\left(\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}\right)$

- Package:

32-pin plastic TSOP (TSOP(1)32-P-0814-0.50-1K)(Product name : MSM7582BTS-K)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

AGND 1	0	32 DGND
SG 2		31 IFIN
$1+3$		30 TXCI
1-4		29 TXCO
$Q+5$		28 TXD
Q-6		27 TXW
ENV 7		26 DEN
PDNO 8		25 EXCK
PDN1 9		24 DIN
PDN2 10		23 DOUT
$\mathrm{V}_{\mathrm{DD}} 11$		22 MCK
SLS1 12		21 RXD
SLS2 13		20 RXC
RCW 14		19 IFCK
AFC 15		18 X 2
RPR 16		17 X1

32-Pin Plastic TSOP

PIN AND FUNCTIONAL DESCRIPTIONS

TXD

Transmit data input for 384 kbps .

TXCI

Transmit clock input.
When the control register CR0 - B6 is " 0 ", a 384 kHz clock pulse synchronous with TXD should be input to this pin. This clock pulse should be continuous because these devices use APLL to generate the internal clock pulse.
When CR0 - B6 is " 1 ", a 3.84 MHz clock pulse should be input to this pin. When the 3.84 MHz clock pulse is applied, TXCO outputs a 384 kHz clock pulse, which is generated by dividing the 3.84 MHz to TXCI by 10. The transmit data, synchronous 384 kHz clock pulse, should be input to the TXD. In this case the devices do not use APLL, and the 3.84 MHz clock pulse need not be continuous. (Refer to Fig. 1.)

TXCO

Transmit clock output.
When CR0-B6 is " 0 ", TXCO outputs the 384 kHz clock pulse (APLL output) for monitoring purposes. When CR0 - B6 is " 1 ", this pin outputs a 384 kHz clock pulse generated by dividing the TXCI input by 10. (Refer to Fig. 1.)
When CR0 $-\mathrm{B} 6=$ " 0 " and CR5 $-\mathrm{B} 7=$ " 1 ", this pin outputs the burst timing position.

TXW

Transmit data window input.
The transmit timing signal for the burst data is input to the device pin. If TXW is " 1 ", the modulation data is output. (Refer to Fig. 1.)

MSM7582B

Figure 1 Transmit Timing Diagram

I+, I-

Quadrature modulation signal I component differential analog outputs.
Their output levels are $500 \mathrm{mV}_{\mathrm{pp}}$ with 1.6 Vdc as the center value. The output pin load conditions are: $\mathrm{R} \geq 10 \mathrm{k} \Omega, \mathrm{C} \leq 20 \mathrm{pF}$. The gain of these pins can be adjusted using the control register CR1 B7 to B4, and the offset voltage at the I- pin can be adjusted using CR3-B7 to B3.

Q+, Q-

Quadrature modulation signal Q component differential analog outputs.
Their output levels are 500 mV PP with 1.6 Vdc as the center value. The out put pin load conditions are: $\mathrm{R} \geq 10 \mathrm{k} \Omega, \mathrm{C} \leq 20 \mathrm{pF}$. The gain of these pins can be adjusted using the control register CR1 B3 to B0, and the offset voltage at the Q- pin can be adjusted by using CR4-B7 to B3.

ENV

Quadrature modulation signal envelope ($\sqrt{\mathrm{I}^{2}+\mathrm{Q}^{2}}$) output.
Its output level is $500 \mathrm{mV}_{\text {PP }}$ with 1.6 Vdc as a center value. The output pin load conditions are : $\mathrm{R} \geq 10 \mathrm{k} \Omega, \mathrm{C} \leq 20 \mathrm{pF}$. The gain of this output can be adjusted using the control register CR2-B7 to B4.
This pin is also used to monitor eye pattern, AFC Compensating signal, and phase defection of the demodulator block during the test mode. Refer to the description of the control register for details.

SG

Internal reference voltage output.
The output voltage is about 2.0 V . A bypass capacitor should be connected between this pin and the AGND pin. The external SG voltage, if necessary should be used via a buffer.

PDNO, PDN1, PDN2

Inputs for power-down control.
PDN0 controls the standby / communication modes, PDN1 controls the modulator, and PDN2 controls the demodulator. Refer to Table 1 for details.
The control register should be reset by input of a signal with width of 200 ns or more.
Be sure to reset all the control registers by keeping Mode A for 200ns or longer after the power is turned on and the V_{DD} exceeds 2.7 V .

Table-1 Power Down Control

	PDN0	PDN2	PDN1		Function	Mode
Standby Mode	0	$0 / 1$	1	All power-down. The control register is reset.	Mode A	
	0	0	0	All power-down. The control register is not reset.	Mode B	
	0	1	0	Modulator power is off (VREF and PLL power are also off). Demodulator power is on.	Mode C	
	1	0	0	Modulator power is off (VREF and PLL power is on). l and Q outputs are in a high-impedance state. Only demodulator clock recovery block power is on.	Mode D	
	1	1	0	Modulator power is on Only demodulator clock recovery block power is on.	Mode E	

$V_{D D}$

+3 V power supply voltage.

AGND

Analog signal ground.

DGND

Digital signal ground.
AGND and DGND pins should be connected as close as possible on the PCB.

MCK

Master clock input.
The clock frequency is 19.2 MHz .

IFIN

Modulated signal input for the demodulator block.
Select the IF frequency from 1.2 MHz, 10.7 MHz, 10.75 MHz , and 10.8 MHz , based on CR0 - B4 and B3.

IFCK

Clock signal input for demodulator block IF frequencies (10.7 MHz or 10.75 MHz).
If the IF frequency is $10.7 \mathrm{MHz}, 19.0222 \mathrm{MHz}$ should be supplied. When it is $10.75 \mathrm{MHz}, 19.1111$ MHz should be supplied. When the IF frequency is 1.2 MHz or 10.8 MHz , set this pin to " 0 " or "1". (Refer to Fig. 2.)

X1, X2

Crystal oscillator connection pins.
When supplying a 19.0222 MHz or 19.1111 MHz clock to IFCK, use these pins (Refer to Fig. 2.)

When IFIN $=10.7 \mathrm{MHz}$ or 10.75 MHz

When IFIN $=1.2 \mathrm{MHz}$ or 10.8 MHz

19.0222 MHz or 19.1111 MHz

Figure 2 How to Use IFCK, X1, and X2

RXD, RXC

Receive data and clock output. When power is turned on, the outputs of circuits selected by SLS1 and SLS2 appear at these pins. (Refer to Fig. 3)

Figure 3 RXD and RXC Timing Diagram

SLS2, SLS1

Receiver slot select signal inputs.
The devices have four sets of clock recovery circuit to each channel and four AFC information storage registers. One these circuits is selected from a combination of the signals at these pins.
$(S L S 2, S L S 1)=(0,0): S l o t ~ 1, ~(0,1): S l o t ~ 2$
(1, 0): Slot 3, (1, 1): Slot 4

RPR

High-speed phase clock control signal input for the clock recovery circuit.
If this pin is " 1 ", the clock recovery circuit starts in the high-speed phase clock mode. When the phase difference is less than a defined value, the circuit shifts to the low-speed phase clock mode automatically. When this pin is " 0 ", the circuit is always in the low-speed phase clock mode.

AFC

AFC operation range specification signal input.
As shown in Fig. 4, the AFC information is reset when both AFC and RPR are set to " 1 ". AFC operation starts after a fixed number of clock cycles and after the AFC information is reset. If RPR is set to " 1 ", an average number of times that AFC turns on is low. If RPR is " 0 ", AFC is high. If AFC is " 0 ", frequency error is not calculated, but the frequency is corrected using an error that is held.

RCW

Clock recovery circuit operation ON/OFF control signal input. If RCW pin is " 0 ", DPLL does not make any phase corrections.
(CASE1)

Figure 4 AFC Control Timing Diagram

DEN , EXCK, DIN, DOUT

Serial control ports for the microprocessor interface.
The MSM7582 and MSM7582B contain a 6-byte control register. An external CPU uses these pins to read data from and write data to the control register. DEN is an enable signal input pin. EXCK is a data shift clock pulse input pin. DIN is an address and data input pin. DOUT is a data output pin. Figure 5 shows an input/output timing diagram.

(b) Data Read Timing Diagram

Figure 5 MCU Interface Input/Output Timing Diagram

The register map is shown below
Table-2 Control Register Map

Register	Address			Data								R/W
	A2	A1	A0	B7	B6	B5	B4	B3	B2	B1	B0	
CRO	0	0	0	PS/CS	TXCSEL	MODOFF	IFSEL1	IFSELO	ENVSEL	TEST1	TESTO	R/W
CR1	0	0	1	Ich GAIN3	Ich GAIN2	Ich GAIN1	Ich GAINO	Qch GAIN3	Qch GAIN2	Qch GAIN1	Qch GAINO	R/W
CR2	0	1	0	ENV GAIN3	ENV GAIN2	ENV GAIN1	$\begin{aligned} & \text { ENV } \\ & \text { GAINO } \end{aligned}$	-	-	-	ICTO*	R/W
CR3	0	1	1	Ich Offset4	Ich Offset3	Ich Offset2	Ich Offset1	$\begin{gathered} \text { Ich } \\ \text { Offset0 } \end{gathered}$	-	-	-	R/W
CR4	1	0	0	Qch Offset4	Qch Offset3	Qch Offset2	$\begin{aligned} & \text { Qch } \\ & \text { Offset1 } \end{aligned}$	$\begin{aligned} & \text { Qch } \\ & \text { Offset0 } \end{aligned}$	-	-	-	R/W
CR5	1	0	1	BSTO ENBL	ICT6	ICT5	ICT4	$\begin{aligned} & \text { LOCAL } \\ & \text { INV1 } \end{aligned}$	$\begin{aligned} & \text { LOCAL } \\ & \text { INVO } \end{aligned}$	$\begin{aligned} & \text { CLK } \\ & \text { SEL1 } \end{aligned}$	$\begin{aligned} & \text { CLK } \\ & \text { SELO } \end{aligned}$	R/W

R/W : Read/Write enable

* Read-only register

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condtion	Rating	Unit
Power Supply Voltage	V_{DD}	-	0 to 5	V
Digital Input Voltage	$\mathrm{V}_{\mathrm{DIN}}$	-	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-	-55 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS $\quad\left(V_{D D}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-25^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condtion	Min.	Typ.	Max.	Unit
Power Supply Voltage	$V_{D D}$	-	2.7	-	3.6	V
Operating Temperature	Ta	-	-25	+25	+70	${ }^{\circ} \mathrm{C}$
Input High Voltage	V_{IH}	All digital input pins	$0.45 \times V_{\text {DD }}$	-	$V_{D D}$	V
Input Low Voltage	VIL	All digital input pins	0	-	$0.16 \times V_{\text {DD }}$	V
Master Clock Frequency	$\mathrm{f}_{\text {мск }}$	MCK	-	19.2	-	MHz
Modulator Input Frequency	$\mathrm{f}_{\text {TXC1 }}$	TXCI (when CRO-B6 = "0")	-	384	-	kHz
	$\mathrm{f}_{\text {TXC2 }}$	TXCI (when CR0 - B6 = "1")	-	3.84	-	MHz
Demodulator Input Frequency	$\mathrm{f}_{\mathrm{FCCK} 1}$	IFCK (when IFIN = 10.7 MHz)	$-50 \mathrm{ppm}$	19.0222	+50 ppm	MHz
	$\mathrm{f}_{\text {ICK2 }}$	IFCK (when IFIN = 10.75 MHz)	$-50 \mathrm{ppm}$	19.1111	+50 ppm	MHz
Clock Duty Cycle	Dcck	MCK, IFCK, TXCI	40	50	60	\%
IF Input Duty Cycle	$\mathrm{D}_{\text {ClF }}$	IFCK	45	50	55	\%

ELECTRICAL CHARACTERISTICS

DC Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-25^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Power Supply Current	IDD1	Mode A, Mode B (when $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)	-	0.02	0.05	mA
	IDD2	Mode C (when $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)	-	5.5	11.0	mA
	IDD3	Mode D (when $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)	-	5.5	11.0	mA
	IDD4	Mode E (when $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)	-	11.5	23.0	mA
	IDD5	Mode F (when $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)	-	9.5	19.0	mA
	IDD6	Mode G (when $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$)	-	14.0	28.0	mA
Output High Voltage	$\mathrm{V}_{\text {OH }}$	$\mathrm{I}_{\mathrm{OH}}=0.4 \mathrm{~mA}$	$0.5 \times V_{D D}$	-	$V_{D D}$	V
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=-1.2 \mathrm{~mA}$	0.0	-	0.4	V
Input Leakage Current	I_{H}	-	-	-	10	$\mu \mathrm{A}$
	ILL	-	-	-	10	$\mu \mathrm{A}$

Analog Interface Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-25^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condtion	Min.	Typ.	Max.	Unit
Output Resistance Load	RLIQ	$1+, 1-, Q+, Q-$, ENV	10	-	-	k Ω
Output Capacitance Load	CLIQ	$1+, 1-, Q+, Q-$, ENV	-	-	20	pF
Output DC Voltage Level	$V_{\text {DC1 }}$	$1+, 1-, Q+, Q-(T X W=0)$	1.55	1.6	1.65	V
	$V_{\text {DC2 }}$	$I+(C R O-B 5=1)$ when not modulated	-	1.77	-	V
	$V_{\text {DC3 }}$	$Q+(C R 0-B 5=1)$ when not modulated	-	1.67	-	V
	$V_{\text {DC4 }}$	ENV (TXW = 0)	-	1.35	-	V
	$V_{\text {DC5 }}$	ENV (TXW = 1, CR0 - B2 = 0, TXD = 0)	-	1.72	-	V
	$V_{\text {DC6 }}$	ENV (TXW = 1, CRO - B2 = 1, TXD = 0)	-	1.63	-	V
Output AC Voltage Level	$V_{\text {AC }}$	$\begin{aligned} & I+, I-, Q+, Q- \\ & (T X D=0) \end{aligned}$	340	360	380	mVPP
Offset Voltage Difference	$V_{\text {OFF }}$	Difference among I_{+}, I_{-}, Q_{+}, and Q_{-}^{-}	-20	-	+20	mV
Output DC Voltage Adjustment Level Range	DCVL	-	-	± 45	-	mV
Output AC Voltage Adjustment Level Range	ACVL	-	-	± 4	-	\%
Out-of-band Spectrum	P600	600 kHz detuning (*)	60	-	-	dB
	P900	900 kHz detuning (*)	65	-	-	dB
Modulation Accuracy	EVM	-	-	1.0	3.0	\% rms
Demodulator IF Input Level	IFV	IFIN input level	0.4	-	$V_{D D}$	V_{PP}
IFIN Input Impedance	RIF	-	-	20	-	$\mathrm{k} \Omega$
	CIF	-	-	5	-	pF
SG Output Voltage	VSG	-	-	2.0	-	V
SG Output Impedance	RSG	-	-	2	-	$\mathrm{k} \Omega$
SG Warm-up Time	TSG	SG↔AGND $0.1 \mu \mathrm{~F}$ (Rise time to 90% of max. level)	-	400	-	$\mu \mathrm{S}$
Modulator D/A Conversion sampling Frequency	FsDA	-	-	1.92	-	MHz
Modulator D/A Conversion offset Frequency	$\mathrm{F}_{\text {CDA }}$	-	-	380	-	kHz

* Power attenuation at 600 kHz or $900 \mathrm{kHz} \pm 96 \mathrm{kHz}$ as referred to two times of the power in frequency band of 0 to 96 kHz

Digital Interface Characteristics
$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-25^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condtion		Min.	Typ.	Max.	Unit
			Other				
Transmitter Digital Input/Output Setting Time	tsx	C load $=50 \mathrm{pF}$	Fig. 6	-200	-	+200	ns
	$\begin{aligned} & \mathrm{t}_{\mathrm{DS}} \\ & \mathrm{t}_{\mathrm{DH}} \end{aligned}$			0	-	200	ns
	$\begin{aligned} & \text { txD1 } \\ & \mathrm{t}_{\mathrm{XD} 2} \end{aligned}$			0	-	200	ns
	$\begin{aligned} & \text { txD3 } \\ & \mathrm{t}_{\mathrm{XXD} 4} \end{aligned}$			0	-	200	ns
Receiver Digital Input/Output Setting Time	trD1	C load = 50 pF	Fig. 7	0	-	200	ns
	trD2			0	-	200	ns
	$\begin{gathered} \mathrm{t}_{\text {RS1 } 1} \text { to } \\ \mathrm{t}_{\mathrm{RS} 4} \\ \hline \end{gathered}$			10	-	-	$\mu \mathrm{S}$
	t_{RW}			10	-	-	$\mu \mathrm{s}$
Serial Port Digital Input/Output Setting Time	$\mathrm{t}_{\mathrm{M} 1}$	C load = 50 pF	Fig. 8	50	-	-	ns
	$\mathrm{t}_{\mathrm{M} 2}$			50	-	-	ns
	$\mathrm{t}_{\mathrm{m} 3}$			50	-	-	ns
	$\mathrm{t}_{\mathrm{M} 4}$			50	-	-	ns
	$\mathrm{t}_{\mathrm{M} 5}$			100	-	-	ns
	$\mathrm{t}_{\text {m6 }}$			50	-	-	ns
	$\mathrm{t}_{\mathrm{M} 7}$			50	-	-	ns
	$\mathrm{t}_{\mathrm{M} 8}$			0	-	100	ns
	t_{M9}			50	-	-	ns
	$\mathrm{t}_{\mathrm{M} 10}$			50	-	-	ns
	$\mathrm{t}_{\mathrm{M11}}$			0	-	50	ns
EXCK Clock Frequency	$\mathrm{f}_{\text {EXCK }}$	-	EXCK	-	-	10	MHz

TIMING DIAGRAM

Transmit Data Input Timing

Transmit Clock (TXCO) Output Timing (when CRO $-\mathrm{B6}=1$)

Transmit Burst Position Output (TXCO) Timing (when CRO - B6 = 0 and CR5-B7 = 1)
M7582

M7582B
TXCI
(384 kHz)
TXW

TXCO

Figure 6 Transmit (Modulator) Digital Input/Output Timing

Figure 7 Receiver (Demodulator) Digital Input/Output Timing

Figure 8 Serial Control Port Interface

FUNCTIONAL DESCRIPTION

Control Registers

(1) CR0 (basic operation mode setting)

	B7	B6	B5	B4	B3	B2	B1	B0
CR0	PS/CS	TXC SEL	MOD 0FF	IFSEL 1	IFSEL 0	ENV SEL	TEST 1	TEST 0
Initial value $\left(^{*}\right)$	0	0	0	0	0	0	0	0

* the initial value is set when a reset signal is supplied by a PDN.

B7: PS/CS selection
1/CS (4 Clock recovery DPLLs are on.)
0/PS (2 Clock recovery DPLLs are on.)
B6: Transmit timing clock selection
0/TXCI input: 384 kHz .
TXCO output: 384 kHz output from APLL. Transmit data TXD is input in synchronization with the rising edge of TXCI (APLL is on.)
1/TXCI input: 3.84 MHz .
TXCO output: 384 kHz (one-tenth of the TXCI frequency). Transmit data TXD is input in synchronization with the rising edge of TXCO (APLL is off.)

B5: Modulation on/off control
1/modulation OFF (with phase fixed)
$0 /$ modulation ON.
B4, B3: Receiver input IF frequency selection
(0, 0), (0, 1):
1.2 MHz
$(1,0)$:
10.8 MHz
$(1,1): \quad$ 10.7 MHz/10.75 MHz

B2: Transmit envelope ($\mathrm{I}^{2}+\mathrm{Q}^{2}$ or $\sqrt{\mathrm{I}^{2}+\mathrm{Q}^{2}}$)output selection
$1 / \mathrm{I}^{2}+\mathrm{Q}^{2}$ output
$0 / \sqrt{\mathrm{I}^{2}+\mathrm{Q}^{2}}$ output
B1, B0: Test mode selection bits. Each monitor output is output to the transmit ENV pin.
$(0,0)$: Transmit envelope ($\mathrm{I}^{2}+\mathrm{Q}^{2}$ or $\sqrt{\mathrm{I}^{2}+\mathrm{Q}^{2}}$) output
$(0,1)$: receiver phase detection signal output
$(1,0)$: receiver delay detection signal output
$(1,1)$: receiver AFC information output
(2) CR1 (I, Q gain adjustment)

	B7	B6	B5	B4	B3	B2	B1	B0
CR1	Ich GAIN3	Ich GAIN2	Ich GAIN1	Ich GAIN0	Qch GAIN3	Qch GAIN2	Qch GAIN1	Qch GAIN0
	0	0	0	0	0	0	0	0

B7 to B4: I $+/ \mathrm{I}$ - output gain setting, in 3 mV steps (Refer to Table-3.)
B3 to B0: $\mathrm{Q}+/ \mathrm{Q}-$ output gain setting, in 3 mV steps (Refer to Table-3.)
(3) CR2 (ENV gain adjustment)

	B7	B6	B5	B4	B3	B2	B1	B0
CR2	ENV GAIN3	ENV GAIN2	ENV GAIN1	ENV GAIN0	-	-	-	ICT0
Initial value	0	0	0	0	0	0	0	1

B7 to B4: ENV output gain adjustment (Refer to Table-3.)
B3 to B1: Not used
B0 : Device test control bit.
Table-3 I, Q, and ENV Output Gain Values

CR1-B7	-B6	-B5	-B4	
CR1-B3	-B2	-B1	-B0	
CR2-B7	-B6	-B5	-B4	
0	1	1	1	Description
0	1	1	0	Amplitude
0	$1.042 \times$ Reference value			
0	1	0	1	1.036
0	1	0	0	1.030
0	0	1	1	1.024
0	0	1	0	1.018
0	0	0	1	1.012
0	0	0	0	1.006
1	1	1	1	$1.000 \quad$ (Reference value)
1	1	1	0	0.994
1	1	0	1	0.988
1	1	0	0	0.982
1	0	1	1	0.976
1	0	1	0	0.970
1	0	0	1	0.964
1	0	0	0	0.958

(4) CR3 (I- output offset voltage adjustment)

	B7	B6	B5	B4	B3	B2	B1	B0
CR3	Ich Offset4	Ich Offset3	Ich Offset2	Ich Offset1	Ich Offset0	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7 to B3: I- output pin offset voltage adjustment (Refer to Table-4.)
B2 to B0: Not used
(5) CR4 (Q- output offset voltage adjustment)

	B7	B6	B5	B4	B3	B2	B1	B0
CR4	Qch Offset4	Qch Offset3	Qch Offset2	Qch Offset1	Qch Offset0	-	-	-
Initial value	0	0	0	0	0	0	0	0

B7 to B4: Q- output pin offset voltage adjustment (Refer to Table-4.)
B3 to B1: Not used
Table-4 I and Q Channel Offset Adjustment Values

CR3-B7	B6	B5	B4	B3	Description	CR3-B7	B6	B5	B4	B3	Description
CR4-B7	B6	B5	B4	B3		CR4-B7	B6	B5	B4	B3	
0	1	1	1	1	Offset +45 mV	1	1	1	1	1	Offset -3 mV
0	1	1	1	0	+42 mV	1	1	1	1	0	$-6 \mathrm{mV}$
0	1	1	0	1	+39 mV	1	1	1	0	1	-9mV
0	1	1	0	0	+36 mV	1	1	1	0	0	-12 mV
0	1	0	1	1	+33 mV	1	1	0	1	1	-15 mV
0	1	0	1	0	$+30 \mathrm{mV}$	1	1	0	1	0	-18mV
0	1	0	0	1	+27 mV	1	1	0	0	1	-21 mV
0	1	0	0	0	+24 mV	1	1	0	0	0	-24mV
0	0	1	1	1	+21 mV	1	0	1	1	1	-27 mV
0	0	1	1	0	+18 mV	1	0	1	1	0	-30 mV
0	0	1	0	1	+15 mV	1	0	1	0	1	-33 mV
0	0	1	0	0	+12 mV	1	0	1	0	0	-36 mV
0	0	0	1	1	+9 mV	1	0	0	1	1	-39 mV
0	0	0	1	0	$+6 \mathrm{mV}$	1	0	0	1	0	-42 mV
0	0	0	0	1	+3 mV	1	0	0	0	1	$-45 \mathrm{mV}$
0	0	0	0	0	0 mV	1	0	0	0	0	-48 mV

(6) CR5

	B7	B6	B5	B4	B3	B2	B1	B0
CR5	BST0 ENBL	ICT6	ICT5	ICT4	LOCAL INV1	LOCAL INV0	CLK SEL1	CLK SEL0
Initial value	0	0	0	0	0	0	0	0

B7: Modulator burst window output enable bit.
1/The timing of the I and Q baseband modulation output burst is output at the TXCO pin. $0 /$ The 384 kHz transmit timing clock pulse is output at the TXCO pin.

B6 to B4: ICT6 to ICT4. Device test control bits.
B3, B2: Local inverting mode setting bits.
$(1,1)=$ local inverting mode
(0,0) = normal mode
B1: Clock pulse shaping mode selection bit.
1/Clock pulse shaping mode (Refer to Fig 9.)
$0 /$ Oscillator circuit mode
B0: Power-on control bit for $\mathrm{X} 1, \mathrm{X} 2$ pins, when the clock pulse shaping mode.
1/ Always power-on
$0 /$ Power-down in the whole device power-down state when Power on otherwise.
Note: CR5 - B6 to B4 are used to test the device. They should be set to " 0 " during normal operation.

Figure 9 Example of Application Circuit when the Clock Pulse Shaping Mode is Generated by CR5-B1

State Transition Time

Figure 10 Power-Down State Transition Time

APPLICATION CIRCUIT

Figure 11 Example of Circuit Configuration

Demodulator Control Timing Diagram (Example)

PACKAGE DIMENSIONS

(Unit : mm)
TSOP(1)32-P-0814-0.50-1K

Package material	Epoxy resin
Lead frame material	42 alloy
Pin treatment	Solder plating $(\geq 5 \mu \mathrm{~m})$
Package weight (g)	0.27 TYP.
Rev. No./Last Revised	3/Dec. 10, 1996

Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2001 Oki Electric Industry Co., Ltd.

