OKI Semiconductor

This version: Aug. 1998 Previous version: Nov. 1996

MSM7502

Multi-Function PCM CODEC

GENERAL DESCRIPTION

The MSM7502, developed especially for low-power and multi-function applications in touchtone telephone sets and digital telephone terminals of digital PBXs, is a single +5 V power supply CODEC device. The device consists of the analog speech paths directly connectable to a handset, the calling circuit directly connectable to a piezosounder, the push-button key scanning interface between push buttons and control processors, the dial tone generator, the μ -law/A-law CODEC, and the processor interface. The functions can be controlled via 8-bit data bus.

For the CODEC of the MSM7502, an MSM7543 is used as a core CODEC, so the MSM7502 provides the available bit clock range wider than the family product MSM6895.

In addition, the MSM7502 performs the greater key interface function and offers the upgraded side-tone level, receive level, and speaker pre-amplifier output level.

FEATURES

• Single +5 V Power Supply

• Low Power Dissipation

Power ON Mode : 30 mW Typ. 53 mW Max. Power Saving Mode : 2 mW Typ. 5 mW Max.

In compliance with ITU-T's companding law

• Transmission clocks : 64, 128, 256, 512, 1024, 2048 kHz

96, 192, 384, 768, 1536, 1544 kHz

• Built-in PLL

Built-in Reference Voltage Supply

Calling Tone Interval : Controlled by processor

Calling Tone Combination
 Calling Tone Volume
 Controlled by processor, 6 modes
 Controlled by processor, 4 modes

• Ringing Tone Interval : Controlled by processor

Ringing Tone Frequency
Ringing Tone Level
Controlled by processor, 6 modes
Controlled by processor, 4 levels

• Built-in PB Tone Generator

Built-in Speech path Control Switches

General Latch Output for External Control
Watch-dog Timer
2 bits
500 ms

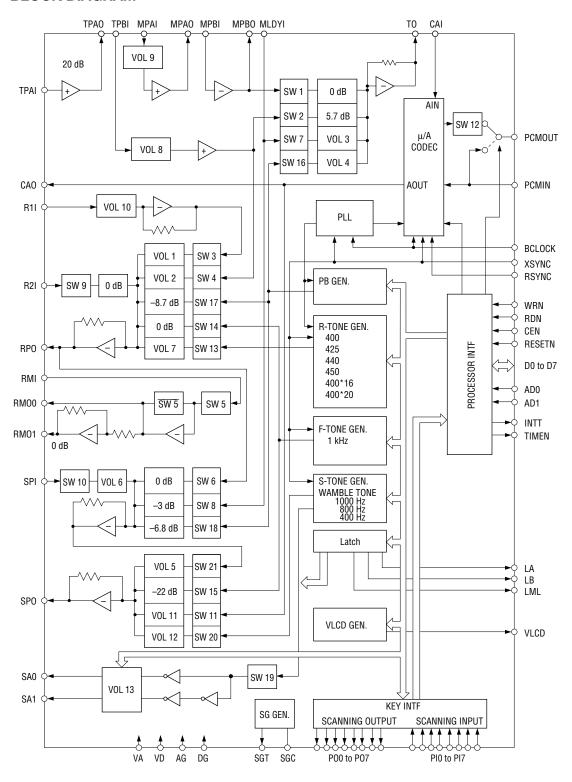
Key Scanning I/O

Output : 8 bits Input : 8 bits

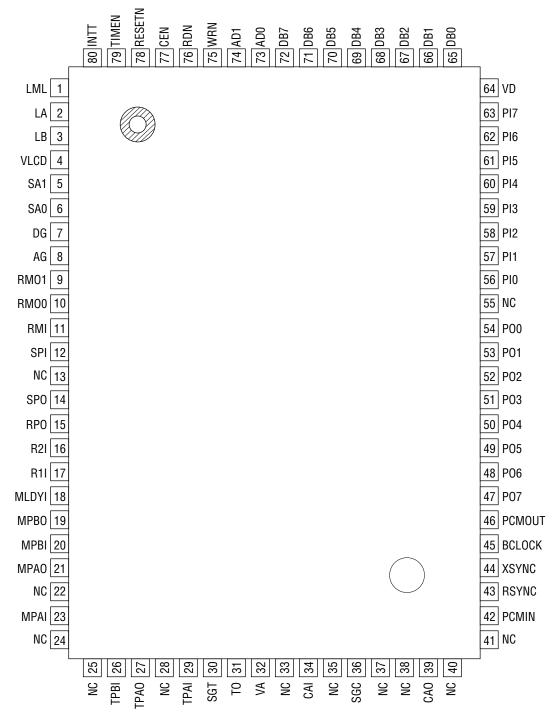
• Direct Connection to Handset : $1.2 \text{ k}\Omega$ driving available

• Built-in Pre-amplifier for Loud-speaker

Hand-free Interface


• μ-law/A-law Switchable CODEC

• LCD Deflection Angle Voltage : Controlled by processor, 8 levels


Package:

80-pin plastic QFP (QFP80-P-1420-0.80-BK) (Product name: MSM7502GS-BK)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

NC : No connect pin **80-Pin Plastic QFP**

PIN AND FUNCTIONAL DESCRIPTIONS

LA, LB

General latch outputs for external control.

Statuses of these outputs are controlled via the processor interface. Refer to the description of the control data for details. These outputs provide the capability to drive one TTL.

DG

Digital Ground.

DG is separated from the analog ground AG inside the device. But, DG should be connected as close to the AG pin on PCB as possible.

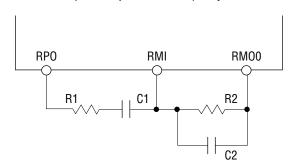
AG

Analog Ground.

SA0, SA1

Sounder (calling tone) driving outputs.

The output signal on SA1 is inverted against the signal on SA0. The sounder circuit can be easily configured by connecting a piezo-sounder between SA0 and SA1. Through processor control, the calling tone volume is selectable from four levels and one of six tone combinations is selectable. Initially, the ringing tone volume is set at a maximum and the tone combination is set at a 16 Hz Wamble tone by a combination of 1 kHz and 1.3 kHz. If these pins are used with no-load, tone volume cannot be controlled. When tone volume control is required, a load resistor must be connected between SA0 and SA1.


RMI, RMO0, RMO1

Receive main amplifier input and outputs.

RMI is the inverted input and RMO0 and RMO1 are the outputs of the receive main amplifier. The output signal on RMO1 is inverted against RMO0 by a gain 1 (0 dB), so the earphone of a handset is directly connected between RMO0 and RMO1. During the system power down, the RMO0 and RMO1 outputs are in a high impedance state. The receive main amplifier gain is determined by a resistor connected between RPO and RMI, and a resistor connected between RMI and RMO0. The receive main amplifier gain varies between 0 and +20 dB in effect. A piezo-receiver with an impedance greater than 1.2 k Ω is available.

If the adjusting of receive path frequency characteristics is required, insert the following circuit for adjustment. During the whole system Power ON, the speech path from RMI to RMO0 and RMO1 is disconnected and the output of RMO0 and RMO1 is at the SG level (VA/2). The speech path is provided by processor control.

A circuit example for adjustment of frequency characteristics

Main amplifier gain without capacitors

$$G = \frac{R2}{R1}$$

SPI

Addit0ion input of speaker amplifier.

The typical gain between SPI and SPO is 0 dB. But, the 2-stage gain amplifier allows to set up a gain between 0 dB and –18 dB in a 6 dB step, or a gain between 0 dB and –28 dB in a 4 dB step through processor control. The input resistance of SPI is typically 20 k Ω to 150 k Ω (it varies by gain setting).

SPO

Output of pre-amplifier for speaker.

Since the driving capability is $2.4\,V_{PP}$ for the load of $20\,k\Omega$, SPO can not directly drive a speaker. During the whole system power down mode, SPO is at an analog ground level. During the whole system power on mode, SPO is in a non-signal state (SG level), and a receive voice signal, R-tone, F-tone, hold acknowledge tone, PB signal acknowledge tone, and sounder tone are output from the speaker by processor control.

When the speaker is used as a sounder, the sounder tone is output via the SPO pin by connecting the SPI input with the sounder output (SA0 or SA1). In addition, when the AD-converted sounder tone is sent from the main device, the sounder tone is output via the SPO pin since the CAO pin for CODEC output is internally connected.

R1I, R2I, RPO

R1I and R2I are for the inputs and RPO is for the output of the receive pre-amplifier.

Normally, R1I is connected via an AC-coupling capacitor to the CODEC analog output (CAO), and R2I is used as the mixing signal input pin.

The typical gain between R1I and PRO is -6 dB. Through processor control, gains are variable from -14 dB to 0 dB in 2 dB steps. In addition, the receive pad can control the gain of -9, -6, -3, or 0 dB. The gain between R2I and RPO is fixed to 0 dB.

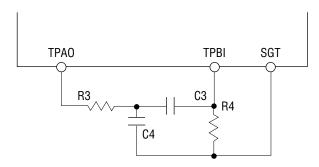
During the whole system power-on mode, the RPO output is in non-signal state, and speech signal, R-tone, F-tone, PB acknowledge tone, side tone signal are output by processor control. During the whole system power-down mode, the RPO output is the analog ground level.

The input resistance of R1I is typically between 20 k Ω and 100 k Ω (it varies by gain setting). The input resistance of R2I is typically 20 k Ω .

MLDYI

Hold tone signal input.

For example, the output of external melody IC is connected to this pin. Through processor control, the signal applied to MLDYI is output from the TO output pin as a hold tone on the transmit path, and from the SPO output pin as a hold acknowledge tone on the receive path. The typical gain between MLDYI and TO is –2 dB. Through processor control, a gain between –2 dB and –11 dB is also settable at 3 dB steps. The typical gain between MLDYI and SPO is –3 dB. Through processor control, a gain between –3 dB to –31 dB is also settable at 4 dB steps. MLDYI is a high impedance input, so insert an about 100 k Ω bias resistor between MLDYI and SGT.


TPBI, TO

TPBI is the input and TO is the output of the transmit pre-amplifier (B).

When the handset is used, TPBI is connected to the transmit pre-amplifier (A) output pin (TPAO). If adjustment of frequency characteristics on the transmit path is required, insert a circuit for adjustment of characteristic between TPAO and TPBI. Through processor control, the signal applied to this pin is output via the TO pin on the transmit path and its side tone via the RPO pin. During the whole system power down mode, TO is at an analog ground level. The typical gain between TPBI and TO is +17.7 dB. Through processor control, a gain between +17.7 dB and +8.7 dB is also settable at 3 dB steps.

The typical gain between TPBI and RPO is +3.0 dB. Through processor control, a gain between -9 dB and +9 dB is variable in 3 dB steps. Changing the gain between TPBI and TO may change the gain between TPBI and RPO. TPBI is a high impedance input, so insert an about 100 k Ω resistor between TPBI and SGT.

MPAI, MPAO

Handfree microphone pre-amplifier (A) input and output.

MPAI is the input and MPAO is the output. The speech path between MPAI and MPAO is always active regardless of processor control. During the whole system power saving mode, MPAO is at an analog ground level. The gain between MPAI and MPAO is typically +20 dB. Through processor control, gains between +14 dB and +11 dB are also settable. MPAI is a high impedance input, so insert an about 100 k Ω between MPAI and SGT.

MPBI, MPBO

The handfree microphone (B) input and output.

MPBI is the inverted input and MPBO is the output. With an external resistance, the amplifier gain is adjusted in the range between –25 dB and +25 dB. A signal on the MPBO is output via the TO pin through processor control. During the whole system power down mode, MPBO is at an analog ground level. The gain between MPBO and TO is fixed to 0 dB.

TPAI, TPAO

The transmit pre-amplifier input and output.

TPAI is the input and TPAO is the output. TPAI should be connected to the microphone of handset via an AC-coupling capacitor if the DC offset appears at a transmit signal (offset from SGT). The transmit path from TPAI to TPAO is always active regardless of processor control. During the whole system power down mode, TPAO is at an analog ground level. The gain between TPAI and TPAO is fixed to 20 dB.

SGT

Transmit path signal ground.

SGT outputs half the supply voltage. During the whole power down mode, SGT is in a high impedance state.

SGC

Bypass capacitor connecting pin for signal ground level. Insert a $0.1~\mu F$ high performance capacitor between SGC and AG.

VA, VD

+5 V power supply.

VA is for an analog circuit and VD is for digital supply. Connect both VA and VD to the +5 V analog path of the system.

CAI, CAO

CODEC analog input and output.

CAI is the analog input of CODEC to be connected to the TO pin. If the DC offset voltage on the TO signal is great, CAI should be connected via AC-coupling capacitor. At this time, insert an about $100 \text{ k}\Omega$ bias resistor between CAI and SGT.

CAO is the analog output of CODEC. CAO should be connected to R1I via AC-coupling capacitor. A bias resistor is not required to R1I. During the whole system or CODEC power down mode, CAO is at the SG voltage level.

BCLOCK

CODEC PCM data I/O shift clock input.

The frequency is one of 64 kHz, 128 kHz, 256 kHz, 512 kHz, 1024 kHz, 2048 kHz, 96 kHz, 192 kHz, 384 kHz, 786 kHz, 1536 kHz, and 1544 kHz. If the BCLOCK signal is not applied, PLL is out of synchronization and the CODEC path goes into the power down mode.

XSYNC, RSYNC

Synchronous signal input.

CODEC PCM data is sent out sequencially via the PCMOUT pin from MSB at the rising edge of the BCLOCK signal in synchronization with the rise of the XSYNC signal. PCM data should be entered via the PCMIN pin with MSB at the head in synchronization with the rise of the RSYNC signal. PCM data is shifted in at the falling edge of the BCLOCK signal.

Since the XSYNC signal is used for a trigger signal for PLL and for a clock signal to the tone generator, if this signal is not applied, not only any tone can not be output, but also PLL goes out of synchronization and the CODEC path goes into a power down mode. This signal has to be synchronous with the BCLOCK signal and its frequency must be within $8\,\mathrm{kHz}\pm50\,\mathrm{ppm}$ to ensure the CODEC AC characteristics (mainly frequency characteristics).

PCMIN

PCM signal input.

PCMIN data is shifted in at the falling edge of the BCLOCK signal and is latched into the internal register after eight bits are shifted.

PCMOUT

PCM signal output.

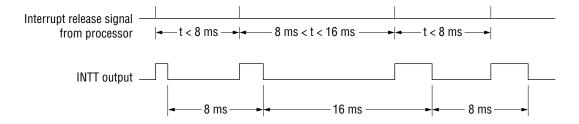
PCMOUT data is shifted out at the rising edge of the BCLOCK signal. PCMOUT is left open after eight bits are shifted or when PLL goes out of synchronization. PCMOUT also is left open through processor control. In addition, a digital path between PCMIN and PCMOUT is formed through processor control. PCMOUT needs a pull-up resistor because of its open-drain circuit.

PO0, PO1, PO2, PO3, PO4, PO5, PO6, PO7

Key scanning outputs.

These output pins need external pull-up resistors because of their open-drain circuits. But, when these are used in combination with PI0 to PI7, pull-up resistors are not required. Through processor control, these outputs can be set open or to digital "0". Initially, these outputs are set at an opened state.

PI0, PI1, PI2, PI3, PI4, PI5, PI6, PI7


Key scanning inputs.

In the READ mode, data on PI0 to PI7 can be read out of the processor via data bus (DB0 to DB7). Since these inputs are pulled up inside the IC, external resistors are not required.

INTT

Interrupt signal output to the processor.

INTT outputs interrupt signals (digital "0") at intervals of 8 ms by the interrupt release control signal from the processor. This output keeps digital "0" unless the interrupt is released. INTT does not output any signal while no XSYNC signal is input. When the RESETN signal is in "0" state, INTT is in "1" state. INTT goes from "1" state to "0" state 8 ms after the RESETN signal goes to "1" state.

DB0, DB1, DB2, DB3, DB4, DB5, DB6, DB7

Data bus inputs and outputs.

These pins are configured as an output during the READ mode only and as an input during other modes.

AD0, AD1

Address data inputs for the internal control registers.

Addressing of the internal control registers is executed by AD0 and AD1 and sub address data, DB7 and DB6.

	AD1	AD0	DB7	DB6	Function
			0	0	ON/OFF controls of sounder, R-Tone, F-Tone
			0	1	Level/Frequency controls of sounder, R-Tone
	0	0	1	0	PB tone control
			1	1	Controls of internal speech path switch and general latch Watchdog timer reset
			0	0	Controls of receive gain and side tone gain
WDITE	_	4	0	1	Controls of transmit hold tone, PB tone, handfree input, handset inputs gain
WRITE	0	1	1	0	Controls of speaker pre-amplifier gain and additional speaker gain
			1	1	Controls of receive PAD and incoming tone input gain
	1	0	_	_	Key scanning output control
	1	1	0	0	Key scanning interrupt reset
	1	1	0	1	LCD deflection angle control voltage setting
	1	1	1	0	Power ON/OFF control
	1	1	1	1	CODEC control (Controls of companding law and digital loop)
READ	1	0	_	_	Key scanning data read-out

WRN

Write signal for internal control registers.

Data on the data bus is written into the registers at the rising edge of WRN under the condition of digital "0" of CEN (Chip Enable). While CEN is in digital "1" state, WRN becomes invalid. The Write cycle is a minimum of $2\,\mu s$ regardless of the presence or absence of clock signals.

RDN

Read signal input to read PI0 to PI7 out of the processor.

When CEN and RDN are in digital "0" state, the digital values on PI0 to PI7 are output onto the data buses DB0 to DB7. While CEN is in digital "1" state, the RDN signal becomes invalid.

CEN

Chip Enable signal input.

When CEN is in digital "0" state, WRN and RDN are valid.

RESETN

Reset signal input.

Digital "0" input to RESETN makes all of internal control registers to be initialized. When powered on, this RESETN signal should be input for initializing the system.

TIMEN

Watchdog timer output.

When the processor does not reset the timer, the 500 ms period (Digital "0": 4 ms) digital signal is continuously output. When RESETN is at digital "0", this timer is reset. And, in about 500 ms after RESETN goes to digital "1", the first timer output signal is issued and then the timer signal is output at intervals of a 500 ms. If the SYNC signal is not input, the TIMEN signal is not output.

LML

Control signal output for external hold tone generator.

LML goes to digital "1" state when the hold tone transmit mode on transmit path or the hold acknowledge tone mode on receive path is selected. During initialized state, LML is in digital "0" state.

VLCD

By processor control, VLCD outputs a DC voltage between 0 and 1.7 V is about 0.25 V step. This is used to control the deflection angle of the LCD display. VLCD has the internal resistance value of about 1 k Ω , so the external load of over 100 k Ω should be used. During initialized state, VLCD outputs the voltage of 0 V.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V_{DD}	AG, DG = 0 V	0 to 7	V
Analog Input Voltage	V _{AIN}	AG, DG = 0 V	-0.3 to V _{DD} + 0.3	V
Digital Input Voltage	V_{DIN}	AG, DG = 0 V	-0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{STG}		-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _D	VA, VD (Voltage must be fixed)	4.75	5.0	5.25	V
Operating Temperature	Ta	_	-10	+25	+70	°C
Input High Voltage	V _{IH}	All Digital Input Pins	2.2	_	V_{DD}	V
Input Low Voltage	V _{IL}	All Digital Input Pins	0	_	0.8	V
Digital Input Rise Time	t _{lr}	All Digital Input Pins	_	_	50	ns
Digital Input Fall Time	t _{lf}	All Digital Input Pins	_	_	50	ns
	D	P00 to P07	10		_	kΩ
Digital Output Load	R _{DL}	PCMOUT	0.5		_	K77
Digital Output Load	C _{DL}	P00 to P07 PCMOUT	_	_	100	pF

Recommend Operating Conditions (Analog Interface)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		TPAO, MPAO, MPBO, TO,	20			
Analog Load Resistance		RPO, SPO, CAO	20	_	_	ko
	R _{AL}	RM00, RM01 with respected to	0.0			kΩ
		SG Level	0.6	_	_	
		TPAO, MPAO, MPBO, TO,			100	"r
Analog Load Capacitance	C _{AL}	RPO, SPO, CAO	_	_	100	pF
		RM00, RM01	_	_	70	nF
		TPAI, TPBI, MPAI	-10	_	+10	
Allowable Analog	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MLDY	-50	_	+50	m)/
Input Offset Voltage	V _{off}	R1I, R2I, SPI	-25	_	+25	mV
		CAI	-100	_	+100	

Recommended Operating Conditions (CODEC Digital Interface)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Clock Frequency	F _C	BCLOCK	96, 192, 384, 768, 1536, 1544			
Sync Pulse Frequency	F _S	XSYNC, RSYNC	6.0	8.0	10.0	kHz
Clock Duty Ratio	D _C	BCLOCK	40	50	60	%
	t _{XS}	BCLOCK→X, RSYNC See Fig.1	_	_	100	ns
Sync Pulse Setting Time	t _{SX}	X, RSYNC→BCLOCK See Fig.1	_	_	100	ns
Sync Pulse Width	t _{WS}	XSYNC, RSYNC	1 BCK	_	100	μs
Data Setup Time	t _{DS}	PCMIN	100	_	_	ns
Data Hold Time	t _{DH}	PCMIN	100	_	_	ns
Allowable Jitter Width	_	XSYNC, RSYNC	_	_	500	ns

Recommended Operating Conditions (Processor Digital Interface)

Parameter	Symbol	Conditi	on	Min.	Тур.	Max.	Unit
Write Pulse Period	-	WRN		2000	1 7 12.	WIGAI	ns
	P _W						115
Write Pulse Width	T _W	WRN		100	_	_	ns
Read Pulse Width	T _R	RDN		200	_	_	ns
Address Data	t _{AW1}	AD0, AD1→WRN		10	_		ns
Setup Time	t _{AR1}	AD0, AD1→RDN		80	_	_	ns
Address Data	t _{AW2}	WRN→AD0, AD1		50	_	_	ns
Hold Time	t _{AR2}	RDN→AD0, AD1	C F:- 0	10	_	_	ns
CEN Catus Time	t _{CW1}	CEN→WRN	See Fig.2	10	_	_	ns
CEN Setup Time	t _{CR1}	CEN→RDN		80	_		ns
OFN Hald Time	t _{CW2}	WRN→CEN		50	_	_	ns
CEN Hold Time	t _{CR2}	RDN→CEN		10	_	_	ns
Data Setup Time	t _{DW1}	DB0 to 7→WRN		110	_	_	ns
Data Hold Time	t _{DW2}	WRN→DB0 to 7		20	_	_	ns
Reset Pulse Width	twres	RESETN		110	_	_	ns

ELECTRICAL CHARACTERISTICS

DC and Digital Interface Characteristics

			(000 - 0 0	±0 /0, 1α –	10 0 10 1	100)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	I _{DD1}	Operating Mode (No Signal, Sounder OFF)	_	6.0	10.0	mA
Power Supply Current	I _{DD2}	Whole system Power Down	_	0.4	0.8	mA
	I _{DD3}	CODEC Power Down	_	2.8	5.0	mA
Input High Voltage	V _{IH}	_	2.2	_	V_{DD}	V
Input Low Voltage	V _{IL}	_	0.0	_	0.8	V
High Input Leakage		Digital Pins except for PI0 to PI7	_	_	2.0	μΑ
Current	I _{IH}	PIO to PI7 (Internal Pull-up Pins)	_	_	2.0	μΑ
Low Input Leakage	1	Digital Pins except for PI0 to PI7	_	_	0.5	μΑ
Current	I _{IL}	PIO to PI7 (Internal Pull-up Pins)	10	_	25	μΑ
Digital Output High		I _{OH} = 0.4 mA	2.4	_	V_{DD}	.,
Voltage	V_{OH}	I _{0H} = 1 μA	3.8	_	V_{DD}	V
Digital Output Low Voltage	V _{OL}	I _{OL} = -1.6 mA	0.0	_	0.4	V
Digital Output Leakage Current	I ₀	PCMOUT, DB0 to DB7 (Write Mode)	_	_	10	μА
Analog Output Offset Voltage	V_{off}	TPAO, MPAO, MPBO, TO, CAO, RPO, RMOO, RMO1, SPO	-100	_	+100	mV
Input Capacitance	CIN	_	_	5	_	pF
Analan lanut Dagistanaa	Б	TPAI, TPBI, MLDYI, RMI, MPAI, MPBI	_	10	_	MΩ
Analog Input Resistance	R_{IN}	R1I, R2I, SPI	10	_	_	kΩ
		CAI (fin : < 4 kHz)	_	1	_	MΩ
SG Voltage	_	_	VA/2 -0.05	VA/2	VA/2 +0.05	V
CC Drive Comment	I _{SGF}	FORCE Current	1.0	1.5	_	Л
SG Drive Current	I _{SGS}	SINK Current	0.3	0.5	_	mA
Equivalent Pull-up Resistance	R _{PULL}	PI0 to PI7, V _I = 0 V	200	370	500	kΩ

AC Characteristics 1 (CODEC)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

					(*00 - 0 *	±0 /0, 14 =	10 0 10	170 0)
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit
-	Loss T1	60			20	27	_	
	Loss T2	300	1		-0.20	+0.07	+0.20	
Transmit Frequency	Loss T3	1020	_			Reference		
Response	Loss T4	2020	0		-0.15	-0.03	+0.20	dB
•	Loss T5	3000			-0.15	+0.06	+0.20	
	Loss T6	3400	1		0.0	0.38	0.80	
	Loss R1	300			-0.15	-0.03	+0.20	
Receive Frequency	Loss R2	1020	1			Reference		
Response	Loss R3	2020	0		-0.15	-0.02	+0.20	dB
Поэропос	Loss R4	3000	1		-0.15	+0.15	+0.20	
	Loss R5	3400]		0.0	0.56	0.80	
	SD T1		3		35	43.0		
Tuamamait Cimmal ta	SD T2	1	0		35	41.0	_	
Transmit Signal to	SD T3	1020	-30	*1	35	38.0	_	dB
Distortion Ratio	SD T4		-40		29	31.0	_	
	SD T5		-45		24	26.5	_	
	SD R1		3		37	43.0	_	
Dagging Cianal to	SD R2		0		37	41.0	_	
Receive Signal to Distortion Ratio	SD R3	1020	-30	*1	37	40.0	_	dB
Distortion natio	SD R4		-40		30	34.0		
	SD R5		-45		25	31.0	_	
	GT T1		3		-0.2	+0.01	+0.2	
	GT T2		-10			Reference		
Transmit Gain	GT T3	1020	-40		-0.2	-0.05	+0.2	dB
Tracking	GT T4		-50		-0.4	+0.05	+0.4	
	GT T5		-55		-1.2	+0.30	+1.2	
	GT R1		3		-0.2	0.0	+0.2	
	GT R2		-10			Reference		
Receive Gain	GT R3	1020	-40		-0.2	-0.10	+0.2	dB
Tracking	GT R4		-50		-0.5	-0.30	+0.5	
	GT R5		-55		-1.2	-0.40	+1.2	

Note: *1 Psophometric filter is used

AC Characteristics 1 (CODEC) (Continued)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

	1	T				(V D = 0 V			
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condit	ion	Min.	Тур.	Max.	Unit
-	-			AIN = SG			-73.5	-70	
	Nidle T	_	_	*1	*2	_	-71	-69	
Idle Channel Noise	Nidle R	_	_	*1 *3		_	-78.0	-75	dBmOp
	AV T	4000				0.5671	0.6007	0.6363	
Absolute Amplitude	AV R	1020	0			0.5671	0.6007	0.6363	Vrms
Absolute Delay Time	Td	1020	0	A to A			0.58	0.60	ms
	tgd T1	500				_	0.19	0.75	
	tgd T2	600				_	0.12	0.35	
Transmit Group Delay	tgd T3	1000	0	*4		_	0.02	0.125	ms
, ,	tgd T4	2600				_	0.05	0.125	
	tgd T5	2800				_	0.08	0.75	
	tgd R1	500				_	0.0	0.75	
	tgd R2	600		*4		_	0.0	0.35	ms
Receive Group Delay	tgd R3	1000	0			_	0.0	0.125	
	tgd R4	2600				_	0.09	0.125	
	tgd R5	2800				_	0.12	0.75	1
Our antally Attanuation	CR T	1020	0	Transmit →	Receive	70	78	_	dB
Crosstalk Attenuation	CR R	1020	0	Receive → Transmit		75	86	_	ub
Discrimination	DIS	4.6 kHz to 72 kHz	-25	0 to 400	00 Hz	30	32.0	_	dB
Out-of-band Signal Spurious	S	300 to 3400	0	4.6 kHz to 100 kHz		_	-37.5	-35	dBm0
Intermodulation Distortion	IMD	fa = 470 fb = 320	-4	2fa-fb			- 52	-35	dBm0
Power Supply Noise Rejection Ratio	PSR T PSR R	0 to 50 kHz	50 mV _{pp}	*5			30	_	dB

Notes:

- *2 Upper is specified for the m-law, lower of the A-law
- *3 PCMIN input : idle CODE
- *4 Minimum value of the group delay distortion
- *5 The measurement under idle channel noise

AC Characteristics 2 (Transmit Path)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

						$(VDD = 3 V \pm 3/6, 18 = -10 0 t0 + 10 0)$			
Parameter	Symbol	Freq. (Hz)	Level (dBV)	Con	dition	Min.	Тур.	Max.	Unit
Pre-Amp Gain	GTPA			TPAI-	-TPAO	18.0	20.0	22.0	dB
Transmit Path Gain	GTPB1	1020	-24.0		BI-TO pical gain	15.7	17.7	19.7	dB
Transmit Path Gain Setting (VOL8)	RG1TPB RG2TPB RG3TPB			For -3 dB typical -6 dB setting -9 dB		-5.0 -8.0 -11.0	-3.0 -6.0 -9.0	-1.0 -4.0 -7.0	dB
Microphone Pre-Amp Gain	GMPA			MPAI-	MPAI-MPAO Set at typical gain		20.0	22.0	dB
Microphone Pre-Amp	RG1MPA	1020	-24.0	For	−6 dB	-8.0	-6.0	-4.0	
Gain Setting (VOL9)	RG2MPA			typical setting	-9 dB	-11.0	-9.0	-7.0	dB
Additional Transmit Signal Gain	GTMX	1020	-4.0	MPB	МРВО-ТО		0.0	+2.0	dB
In-Channel PB Signal Output Level	VPBT1	_	_		To per wave set at typical gain		-17.4	-15.4	dBV
In-Channel PB Signal	GPBT1			For	−3 dB	-5.0	-3.0	-1.0	
Output Level Setting (VOL4)	GPBT2 GPBT3	_	_	typical setting	−6 dB −9 dB	-8.0 -11.0	-6.0 -9.0	-4.0 -7.0	dB
In-Channel PB Signal Frequency Deviation	DfPBT	_	_	Jermy		-1.0	_	+1.0	%
In-Channel PB Signal Distortion	THDPBT	_	_	In-band	Distortion	_	-35	-30	dB
Hold Tone Path Gain	GPAT				YI-TO pical gain	-4.0	-2.0	0.0	dB
Hold Tone Path Gain Setting (VOL3)	RG1PAT RG2PAT RG3PAT	1020	-4.0	For typical setting	−3 dB −6 dB −9 dB	-5.0 -8.0 -11.0	-3.0 -6.0 -9.0	-1.0 -4.0 -7.0	dB
Idle Channel Noise	NiTPA	_	_	TPAI:Terminated in 510 Ω Measured at TO TPAO-TPBI Directly connected Set at typical gain *6			-75	_	dBV
Maximum Output Voltage Swing	VOT	1020	_	MPAO	O, TO, , MPBO 20 kΩ	2.4	_	_	V _{PP}

Note: *6 Noise band width: 0.3 kHz to 3.4 kHz, non-weighted

AC Characteristics 3 (Receive Main Amp.)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Freq.	Level (dBV)	Condition	Min.	Тур.	Max.	Unit
Receive Main Amp Output Gain Difference	DGRMO	1020	-4.4	RM00/RM01 Gain = 1	_	-0.10		dB
Receive Main Amp Output Phase Difference	DPRMO	1020	-4.4	RM00/RM01	_	-179.6	_	deg
Maximum Amplitude	VRMO	1020	_	$1.2~k\Omega$ between RMO0 and RMO1. Measured at each output	3.6	_	_	V _{PP}

AC Characteristics 3 (Receive Path)

						(100 - 01	,		,
Parameter	Symbol	Freq. (Hz)	Level (dBV)	Con	dition	Min.	Тур.	Max.	Unit
Receive Signal Path Gain	GRPA				Typical gain is set between R1I and RPO		-6.0	-4.0	dB
	RGRPA1	1			-8 dB	-10.0	-8.0	-6.0	
	RGRPA2				−6 dB	-8.0	-6.0	-4.0	1
Receive Signal	RGRPA3			For	-4 dB	-6.0	-4.0	-2.0	
Path Gain Setting	RGRPA4	4000	4.0	typical	−2 dB	-4.0	-2.0	0.0	dB
(VOL1)	RGRPA5	1020	-4.0	setting	2 dB	0.0	2.0	4.0	
	RGRPA6				4 dB	2.0	4.0	6.0	
	RGRPA7				6 dB	4.0	6.0	8.0	
Receive PAD	RGPAD1			For	−3 dB	-5.0	-3.0	-1.0	
Gain Setting	RGPAD2			typical	−6 dB	-8.0	-6.0	-4.0	dB
(VOL10)	RGPAD3			setting	−9 dB	-11.0	-9.0	-7.0	
Additional Receive Signal Path Gain	GRMX	1020	-4.0	R2I ar	nd RPO	-2.0	0.0	+2.0	dB
Side Tone Path Gain	GSIDE				ain is set BI and RPO	1.0	3.0	5.0	dB
	RGSIDE1]			6 dB	4.0	6.0	8.0	
	RGSIDE2]		For.	3 dB	1.0	3.0	5.0	1
Side Tone Path Gain	RGSIDE3	1020	-14.0	For	-3 dB	-5.0	-3.0	-1.0] .m
Setting	RGSIDE4			typical	−6 dB	-8.0	-6.0	-4.0	dB
(VOL2)	RGSIDE5]		setting	−9 dB	-11.0	-9.0	-7.0]
	RGSIDE6				-12 dB	-14.0	-12.0	-10.0	
Speaker Pre-Amp Gain	GSP				ain is set PO and SPO	-2.0	0.0	+2.0	dB
	RGSP1	1			-4 dB	-6.0	-4.0	-2.0	
	RGSP2				-8 dB	-10.0	-8.0	-6.0	1
Speaker Pre-Amp	RGSP3	1020	-4.0	For	-12 dB	-14.0	-12.0	-10.0	1
Gain Setting	RGSP4			typical	-16 dB	-18.0	-16.0	-14.0	dB
(VOL5)	RGSP5]		setting	-20 dB	-22.0	-20.0	-18.0	1
. ,	RGSP6				-24 dB	-26.0	-24.0	-22.0	+
	RGSP7				-28 dB	-30.0	-28.0	-26.0	
Additional Speaker Input Path Gain	GSPI	1020	-4.0		ain is set PI and SPO	-2.0	0.0	+2.0	dB

AC Characteristics 3 (Receive Path) (Continued)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

						(-00			
Parameter	Symbol	Freq. (Hz)	Level (dBV)	Cone	dition	Min.	Тур.	Max.	Unit
Additional Speaker	RGSPI1			Setting,	−6 dB	-8.0	-6.0	-4.0	
Input Path Gain Setting	RGSPI2	1020	-4.0	than	-12 dB	-14.0	-12.0	-10.0	dB
(VOL6)	RGSPI3			typical gain	-18 dB	-20.0	-18.0	-16.0	
Hold Acknowledge Tone Path Gain	GPAR	1020	-4.0	1	gain is set .DYI and SPO	-5.0	-3.0	-1.0	dB
	VPBRP			RP0 p	er wave	-32.1	-30.1	-28.1	dBV
PB Acknowledge Tone Output Level	VPBSP	_	_	SPO p	er wave pical gain	-30.2	-28.2	-26.2	dBV
PB Acknowledge Tone Frequency Difference	DfPBR	_	_	RP0	, SPO	-1.0		+1.0	%
PB Acknowledge Tone Distortion	THDPBR	_	_	RP0	, SPO		-35	-30	dB
Incoming Tone Speaker Output Path Gain	GCAO				gain is set AO and SPO	-2.0	0.0	+2.0	dB
Incoming Tone Speaker	RGCA01	1020	-20	Setting,	–10 dB	-12.0	-10.0	-8.0	40
Output Path Gain Setting (VOL11)	RGCA02			than typical gain	-20 dB	-22.0	-20.0	-18.0	dB
	NiRPO	_	_	Measure	:SG, ed at RPO cal gain. *6	_	-86.0	_	dBV
Idle Channel Noise	NiSP0	_	_	Measure	:SG, ed at SPO cal gain. *6	_	-89.0	_	dBV
	NiRMO	_	_	0	G, Gain dB RMOB *6	_	-86.0	_	dBV
Maximum Output Amplitude	VOR	_	_		, SPO 20 kΩ	2.4	_	_	V _{PP}

Note: *6. Noise band width: 0.3 kHz to 3.4 kHz, non weighted

AC Characteristics 4 (Ringing Tone)

					(DD -	,		
Parameter	Symbol	Coi	ndition		Min.	Тур.	Max.	Unit
			Level S	etting 1	63	90	117	
R-Tone Output	VDTO	BB0	Level S	etting 2	84	120	156] ,,
Amplitude (VOL7)	VRT0	RP0	Level S	etting 3	105	150	195	mV_{PP}
			Level S	etting 4	126	180	234	
F. Tama Outmut Amenituda	VFTRP		RP0		112	160	208	mV _{PP}
F-Tone Output Amplitude	VFTSP		SP0		7.5	11.0	14.5	- ШУРР
0.7			Coin	0 dB	154	220	286	
S-Tone Output	VSTSP	SP0	Gain	-10 dB	49	70	91	mV_{PP}
Amplitude (VOL12)			Setting	-20 dB	12	17	22	

AC Characteristics 4 (Sounder Output Circuit)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Freq.	Level (dBV)	Condi	tion	Min.	Тур.	Max.	Unit
	VST1			$730~\Omega$ between	Vol.1	3.25	4.0	_	
Sounder Tone Output	VST2			SA0 and SA1.	Vol.2	0.73	1.28	1.98	.,
Amplitude (VOL13)	VST3	_	_	Measured at	Vol.3	0.25	0.47	0.65	V_{pp}
	VST4			each out	Vol.4	0.13	0.28	0.45	

LCD Defelection Angle Control Voltage Output

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		DB2 DB1 DB0				
		1 1 1	1.40	1.70	2.00	1
		1 1 0	1.25	1.50	1.75]
		1 0 1	1.05	1.30	1.55	
Output Voltage	VLCD	1 0 0	0.85	1.10	1.35	V
		0 1 1	0.65	0.85	1.05	1
		0 1 0	0.35	0.55	0.75	1
		0 0 1	0.15	0.30	0.45	
		0 0 0	0.0	0.0	0.05	
Output Resistance	ROLCD	-	_	1.0	_	kΩ
Output Load	RLLCD	To GND	100	_	_	kΩ

Digital Interface Characteristics

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Digital Output (Latch) Delay Time	t _{PDLA}	WR→LA, LB	0.2	_	1.5	μS
Key Scanning Output Delay Time	t _{PDSCN}	WR \rightarrow P00 to P07 Pull-up resistance : 10 k Ω	0.2	_	1.5	μS
Digital Output (Data) Delay Time	t _{PDDATA}	RD→DB0 to DB7	20	52	150	ns
CODEC Data Output Delay Time	t _{PDCOD}	BCLOCK \rightarrow PCMOUT Pull-up resistance : 500 Ω	20	50	100	ns

TIMING DIAGRAM CODEC Timing

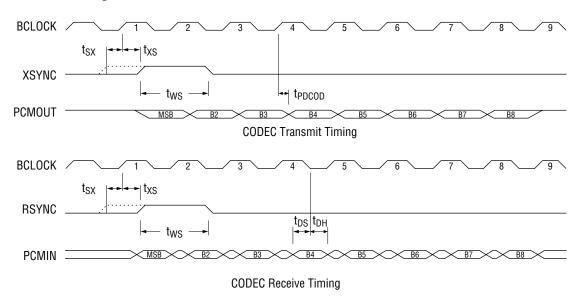


Figure 1

Processor Interface Timing

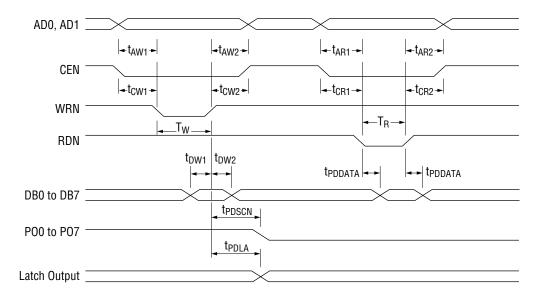


Figure 2

FUNCTIONAL DESCRIPTION

Control Data Description

Sounder and tone ON/OFF control

WRITE Mode

		(Contro	ol Data	а			Description for Control						D
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		Description	tor Col	itroi			Remarks
		1				0	0	Sounder output	ON	SW19	ON			Tone Output: SA0, SA1
		0				0	0	Sounder output	OFF	SW19	OFF			-
		1	0			0	1	Sounder output	ON	SW20	ON			Tone Output: SPO *1
		0				0	1	Sounder output	OFF	SW20	OFF			
0	0	1		0	0	1	0	R-Tone	ON	SW13	ON			
U	U	0		U	U	1	0	R-Tone	OFF	SW13	OFF			Tone Output: RPO
		1				1	1	F-Tone	ON(1 kHz)	SW14	ON,	SW15	OFF,	Tone Output. NFO
		0	0			1	1	F-Tone	OFF	SW14	OFF,	SW15	OFF,	
		1	4			1	1	F-Tone	ON(1 kHz)	SW14	OFF,	SW15	ON,	Tone Output: SPO
		0				1	1	F-Tone	OFF	SW14	OFF,	SW15	OFF,	

^{*1:} This Sounder Output is sent at the timing shown below.

Level and frequency control of sounder and R-tone

WRITE Mode

		(Contro	ol Data	а				
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks
						0	0	SA0, SA1 outputs sounder volume 1 (Large)	Sounder volume and tone
						0	1	SA0, SA1 outputs sounder volume 2 (Middle)	are defind at a time.
						1	0	SA0, SA1 outputs sounder volume 3 (Small 1)	At the initial setting, sounder
						1	1	SA0, SA1 outputs sounder volume 4 (Small 2)	volume 1 and sounder
		0	0	0	0			Sounder combination tone 1 (16 Hz wamble tone with 1000 Hz/1333 Hz)	combination tone 1 are set. SAO. SA1 sounder volume:
			0	0	1			Sounder combination tone 2 (16 Hz wamble tone with 667 Hz/800 Hz)	VOL 13
			0	1	0			Sounder combination tone 3 (8 Hz wamble tone with 800 Hz/1000 Hz)	.02.0
			1	0	0	_	_	Sounder combination tone 4 (Single tone of 1000 Hz)	
			1	0	1			Sounder combination tone 5 (Single tone of 800 Hz)	
0	1		1	1	0			Sounder combination tone 6 (Single tone of 400 Hz)	
						0	0	R-Tone output level 1 (90 mV _{PP} at RPO output)	R-Tone output level = VOL 7
						0	1	R-Tone output level 2 (120 mV _{PP} at RPO output)	
				_		1	0	R-Tone output level 3 (150 mV _{PP} at RPO output)	R-Tone output level and
						1	1	R-Tone output level 4 (180 mV _{PP} at RPO output)	frequency are defined at a time.
		1	0	0	0			R-Tone 400 Hz single tone	At the initial setting, output
			0	0	1			R-Tone 425 Hz single tone	level 1 and a single 400 Hz
			0	1	0			R-Tone 440 Hz single tone	tone are set.
			0	1	1	_		R-Tone 450 Hz single tone	
			1	0	0			R-Tone 400 Hz ON/OFF by 16 Hz	
			1	0	1			R-Tone 400 Hz ON/OFF by 20 Hz	

PB tone control

WRITE Mode

		(Contro	ol Data	а			Outp	ut PB Fr	equency	Damanda
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	РВ	Low	High	Remarks
				0	0	0	0	1	697 Hz	1209 Hz	When PBTC = 0
				0	0	0	1	2	697 Hz	1336 Hz	SW16: ON SW17: ON
				0	0	1	0	3	697 Hz	1477 Hz	SW18: OFF
				0	0	1	1	Α	697 Hz	1633 Hz	PB tone is sent to the transmit path T0 and the receive path RPO.
				0	1	0	0	4	770 Hz	1209 Hz	
				0	1	0	1	5	770 Hz	1336 Hz	When PBTC = 1
				0	1	1	0	6	770 Hz	1477 Hz	SW16: OFF SW17: OFF
4	0	1	PBTC	0	1	1	1	В	770 Hz	1633 Hz	SW18: ON
'	U			1	0	0	0	7	852 Hz	1209 Hz	PB tone is sent to the receive path SPO only.
				1	0	0	1	8	852 Hz	1336 Hz	
				1	0	1	0	9	852 Hz	1477 Hz	
				1	0	1	1	С	852 Hz	1633 Hz	
				1	1	0	0	*	941 Hz	1209 Hz	
				1	1	0	1	0	941 Hz	1336 Hz	
				1	1	1	0	#	941 Hz	1477 Hz	
				1	1	1	1	D	941 Hz	1633 Hz	
		0	0	Χ	Χ	Χ	Χ	PB t	one stop	SW	16, SW17, SW18: OFF

SW control and timer reset

WRITE Mode

		C	Contro	ol Data	а				D	- vietie e fee Oe etect	D
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		Des	cription for Control	Remarks
				0	0	0	1	SW1	ON	Transmit handfree input	When hold tone or PB tone transmit is
				0	0	1	0	SW2	ON	Transmit handset input	selected, these inputs are muted.
				0	0	1	1	SW3	ON	Receive input	_
				0	1	0	1	SW4	ON	Side tone input	When Handfree input is selected, side tone is muted.
				0	1	1	0	SW5	ON	Receive main amplifier input	
				0	1	1	1	SW6	ON	Receive speaker input	_
		1	0	1	0	0	0	SW7	ON	Transmit path hold tone input	When either of SW7 or SW8 is set to ON,
1	1			1	0	0	1	SW8	ON	Receive path hold tone Acknowledge input	external terminal LML goes to "1".
				1	0	1	0	SW9	ON	Additional receive input	
				1	0	1	1	SW10	ON	Additional speaker input	_
				1	1	0	0	SW11	ON	Speaker DEC input	Speaker DEC input = CODEC AOUT
				1	1	0	1	SW12	ON	PCM output enable	_
				1	1	1	0	LA = 1		General Latch output for external c	ontrol
				1	1	1	1	LB = 1		deneral Eater output for external c	
		0	0		Above	codes		Above o	correspond	ing SW or latch is set to OFF or "0".	
		0	0	0	0	0	0	All of al	oove SWs c	or latches are set to OFF or "0" at the in	nitial setting stage.
1	1	1	1	0	0	0	0	Watchd	log timer is	reset.	

Gain setting (receive gain, side tone gain)

WRITE Mode

		(Contro	ol Data	а				
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks
					0	0	0	Typical receive gain (–6dB)	Receive gain = VOL1
					0	0	1	–8 dB than the typical gain	Side tone gain = VOL2
					0	1	0	–6 dB than the typical gain	
					0	1	1	-4 dB than the typical gain	Receive gain and side tone gain are set at a time.
		_	_	_	1	0	0	–2 dB than the typical gain	At the initial cetting the typical gain is get
					1	0	1	+2 dB than the typical gain	At the initial setting, the typical gain is set.
					1	1	0	+4 dB than the typical gain	
0	0				1	1	1	+6 dB than the typical gain	
		0	0	0				Typical side tone gain (–9 dB)	
		0	0	1				-12 dB than the typical gain	
		0	1	0				–9 dB than the typical gain	
		0	1	1				-6 dB than the typical gain	
		1	0	0		_		-3 dB than the typical gain	
		1	0	1				+3 dB than the typical gain	
		1	1	0				+6 dB than the typical gain	
		1	1	1				Side tone OFF (VOL2 max loss)	

Gain control (transmit hold tone, PB tone, microphone input, handset input)

WRITE Mode

		(Contro	l Data	а			Description for Control	Domonika	
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks	
						0	0	Typical transmit hold tone gain (-2 dB)	Transmit hold tone gain = VOL3	
						0	1	-3 dB with respect to the typical gain	Transmit PB tone gain = VOL4	
				_	_	1	0	-6 dB with respect to the typical gain	Hold tone gain and PB tone	
			0			1	1	–9 dB with respect to the typical gain	gain are set at a time.	
				0	0			Typical transmit PB tone gain (+4 dB)	At the initial cetting the tripical pair is cet	
				0	1			-3 dB with respect to the typical gain	At the initial setting, the typical gain is set	
				1	0	_	_	-6 dB with respect to the typical gain		
0	4	0		1	1			–9 dB with respect to the typical gain		
U	'	U				0	0	Typical handfree input gain (+20 dB)	Handfree input gain = VOL9	
						0	1	-6 dB with respect to the typical gain	Handset input gain = VOL8	
					_	1	0	–9 dB with respect to the typical gain	Handfree input gain and handset Input	
			1			1	1	_	gain are set at a time.	
				0	0			Typical handset input gain (+12 dB)		
				0	1			-3 dB with respect to the typical gain	At the initial setting, the typical gain is set	
				1	0	_	_	-6 dB with respect to the typical gain		
				1	1			-9 dB with respect to the typical gain	in	

Gain control (receive PAD, speaker)

WRITE Mode

		(ontro	ol Data	a				
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks
					0	0	0	Typical speaker amp. gain (0 dB)	Speaker amp. gain = VOL5
					0	0	1	-4 dB with respect to the typical gain	Additional speaker gain = VOL6
					0	1	0	-8 dB with respect to the typical gain	Speaker amp. gain and additional
					0	1	1	-12 dB with respect to the typical gain	speaker gain are set at a time.
			_	_	1	0	0	-16 dB with respect to the typical gain	
		1			1	0	1	-20 dB with respect to the typical gain	At the initial setting, SW21-OFF and the
1	0				1	1	0	-24 dB with respect to the typical gain	typical gain are set.
					1	1	1	-28 dB with respect to the typical gain	
			0	0				Typical additional speaker input path gain (0 dB)	
			0	1				-6 dB with respect to the typical gain	
			1	0		_		-12 dB with respect to the typical gain	
			1	1				-18 dB with respect to the typical gain	
		٥	0	0	_		0	Speaker receive OFF(SW21 OFF)	
		0	0	0	0	0	1	Speaker receive ON (SW21 ON)	
						0	0	Typical receive PAD gain (0 dB)	Receive PAD = VOL10
						0	1	-3 dB with respect to the typical gain	Incoming tone gain = VOL11, VOL12
				_	_	1	0	-6 dB with respect to the typical gain	Receive PAD and incoming tone gain are
1	1	0	0			1	1	-9 dB with respect to the typical gain	set at a time.
				0	0			Typical incoming tone gain (0 dB)	At the initial setting, the typical gain is set.
				0	1	1 —	-10 dB with respect to the typical gain	At the fillial setting, the typical gall is set.	
				1	0			-20 dB with respect to the typical gain	

Key scanning signal output control

WRITE Mode

Address Data AD1 = 1, AD0 = 0

Controlo Data	Description for Control		
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB6	Description for Control		
Output Data	The data set on DB7 to DB0 are output on PO7 to PO0 respectively. Output data is held until next data is written. When the set data is set to "0", output data goes to "0", when set to "1", output pin becomes open. At the initial setting, PO7 to PO0 are in open state.		

Key scanning data read out

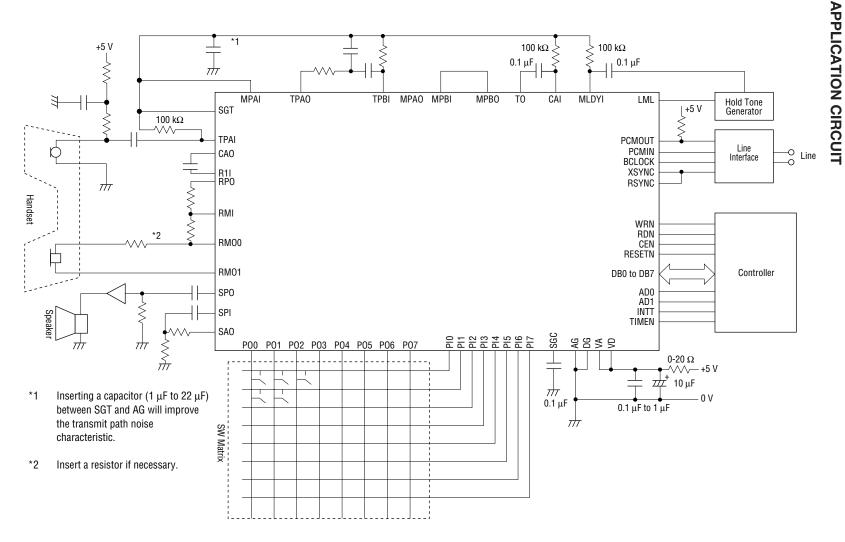
Read Mode

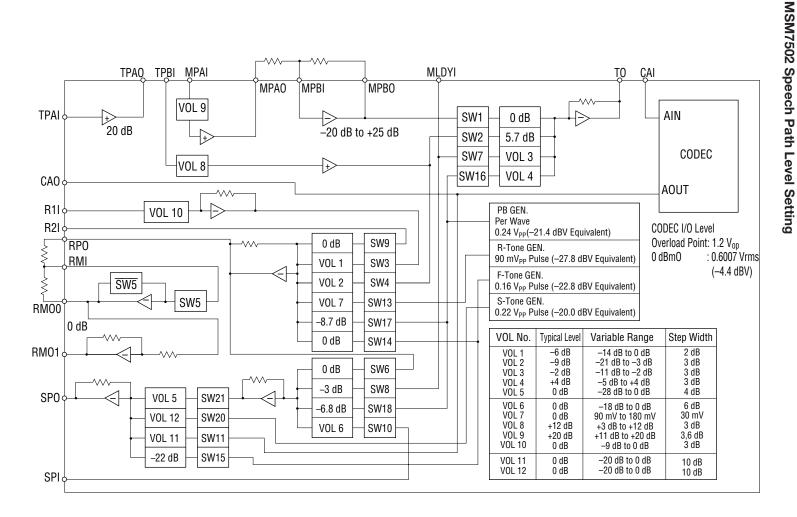
Address Data AD1 = 1, AD0 = 0

Contorol Data								Description for Control	
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Data input onto PI7 to PI0 are output onto DB7 to DB0.	
PI7	PI6	PI5	PI4	PI3	PI2	PI1	PI0	Data input onto F17 to F10 are output onto Db7 to Db0.	

Key scanning interrupt reset

WRITE Mode

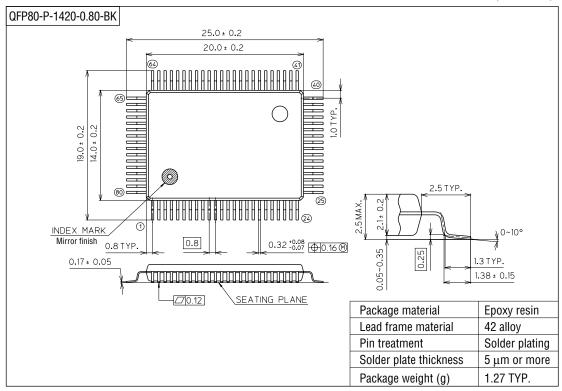

Control Data								Description for Control	Damanka
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks
0	0	0	0	0	0	0	1	INTT output is reset (Output = 1)	Valid during write mode only


Special functions

WRITE Mode

Contorol Data								Description for Control																	
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks																
LCD	Defle	ction	Angle	Cont	rol Vo	Itage	Outpu	ıt																	
			0	0	0	0	0	VLCD pin output voltage: 0.0 V																	
					0	0	1	: 0.30 V																	
0	1	0			0	1	0	: 0.55 V																	
					0	1	1	: 0.85 V	At the initial setting stage,																
	'				1	0	0	: 1.1 V	set to 0 V.																
																					1	0	1	: 1.3 V	
					1	1	0	: 1.5 V																	
					1	1	1	: 1.7 V																	
Pow	er Dov	wn Mo	de C	ontrol																					
			0	0		0	0	Whole system power down mode	At the initial setting stage, set to																
.		0				0	1	Whole system power ON mode	whole system power down mode. CODEC power ON/OFF control is																
ı	0				0	1	0	CODEC power down mode	valid in the whole system power																
						1	1	CODEC power ON mode	ON mode.																
COD	EC C	ontrol																							
							0	CODEC operates in μ-law	At the initial setting stage, set to																
4	4	0	_	0			1	CODEC operates in A-law	μ-law, and PCMIN and PCMOUT are normally connected. The componding law and the connection control are set at a																
ı	1		0		0	0		PCMIN and PCMOUT are normally connected																	
							1		PCMOUT is connected to PCMIN	time.															

^{2:} Even during the whole system power down mode, following functions are available, if XSYNC is input. : Key scanning data I/O, sounder outputs (SAO, SA1), WDT, INTT, and general latch output (LA, LB)


RECOMMENDATIONS FOR ACTUAL DESIGN

• To assure proper electrical characteristics, use bypass capacitors with excellent high frequency characteristics for the power supply and keep them as close as possible to the VA and AG pins.

- Connect the AG pin and the DG pin each other as close as possible. Connect to the system ground with low impedance.
- Connect the VA pin and the VD pin as close together as possible and route them to the analog
 V power supply.
- Mount the device directly on the board when mounted on PCBs. Do not use IC sockets. If an IC socket is unavoidable, use the short lead type socket.
- When mounted on a frame, use electro-magnetic shielding, if any electro-magnetic wave source such as power supply transformers surround the device.
- Keep the voltage on the V_{DD} pin not lower than –0.3 V even instantaneously to avoid latch-up phenomenon when turning the power on.
- Use a low noise (particularly, low level type of high frequency spike noise or pulse noise) power supply to avoid erroneous operation and the degradation of the characteristics of these devices.
- Connect analog input pins and digital input pins that are not used to the SG pin and to GND, respectively.
- When the data is written differently from the data defined in the section, Control Data Description in FUNCTIONAL DESCRIPTION, normal device operation is not guaranteed.

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).