OKI Semiconductor

MSM6882-3/6882-5

2400/1200 bps Single Chip MSK Modem

GENERAL DESCRIPTION

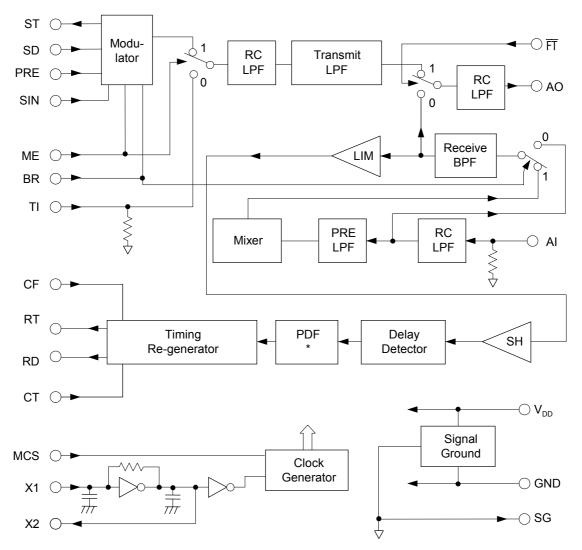
The MSM6882-3/6882-5 is a single chip MSK (Minimum Shift Keying) modem which is fabricated by Oki's low power consumption CMOS silicon gate technology.

This version:

Previous version: Jan. 1998

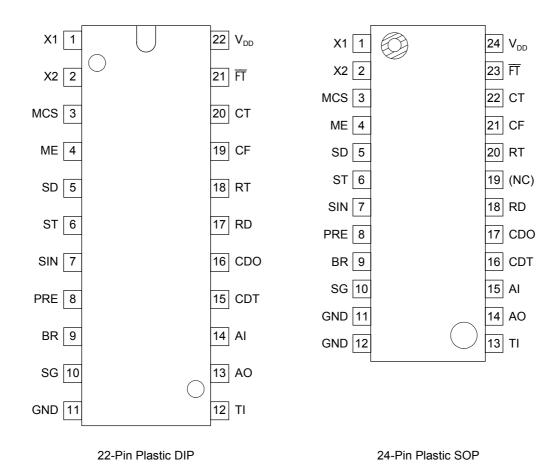
Jun. 2001

The demodulator receives the data to be transmitted (SD) synchronized with the transmit timing clock (ST) generated by the on-chip clock generator. The signal, which is modulated by MSK method, is output.


The demodulator converts the received MSK signal to the received data (RD) by means of a delay detection technique after limiting the band of the received MSK signal. This signal is input to the digital PLL and the regenerated timing clock (RT) is output from the demodulator, synchronized with the RD.

FEATURES

- Signal power supply: +3.6 V (MSM6882-3)
 +5 V (MSM6882-5)
- On-chip SCF (Switched Capacitor Filter)
- The transmit filter can be also used as voice splatter filter.
- The receive timing re-generator has two different lock-in time performance options to be chosen from.
- Bit rate 2400/1200 bps
- CCIR Rec. 623
- The modulation method can be selected from COS-FFSK and SIN-FFSK.
- Built-in crystal oscillation circuit
- Package options:


22-pin plastic DIP (DIP22-P-400-2.54) (Product name: MSM6882-3RS) (Product name: MSM6882-5RS)
24-pin plastic SOP (SOP24-P-430-1.27-K) (Product name: MSM6882-3GS-K) (Product name: MSM6882-5GS-K)

BLOCK DIAGRAM

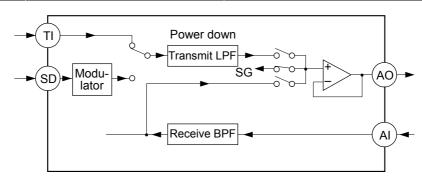
^{*} Post Detection Filter

PIN CONFIGURATION (TOP VIEW)

NC: No connect pin

PIN DESCRIPTION

Name	Description								
X1	Crystal connection pins. A 3.6864 MHz or 7.3728 MHz crystal shall be connected.								
X2	When an external clock is applied for MSM6882's oscillation source, it has to be input to X2. In this case, X2 has to be AC-coupled by the capacitor of 200 pF. X1 shall be left open.								
MCS	Master clock selection. MCS Crystal or External Clock 0 3.6864 MHz 1 7.3728 MHz								
ME	Modulator enable. When a "high" is input on this pin, MSK modulator output is connected to the input of transmit LPF. When a "low" is input on this pin, TI is connected to the input of transmit LPF.								
SD	Send data input. The data on this pin is synchronized with the rising edge of ST and input to MSK modulator as an actual transmit data. SD ST MSK Modulated Data								
ST	This timing signal is used to latch serial input data on the SD pin. The frequency of ST coincides with the transmission bit rate.								
SIN	Modulation method selection. Data put on this pin selects either SINE FAST FSK or COSINE FAST FSK. Data (2400 bps) 0 1 0 0 1 1 Sine Fast FSK Cosine Fast FSK								
PRE	Preamble or data transmission selection. When a "low" is input on this pin, the data put on the SD pin is output on the AO pin. When a "high" is input on this pin, the data put on the SD pin is neglected and preamble data is output. Data put on PRE is latched on the rising edge of ST. Preamble means to modulate as 010101pattern.								


Name		Description							
	Baud rate selection.								
	Master Clock	MCC	DD	Bit Rate	Carrier F	req. (Hz)			
	(MHz)	MCS	BR	(bps)	Mark	Space			
DD.	7.3728	1	1	2400	1200	2400			
BR	7.3720	1	0	1200	1200	1800			
	3.6864	0	0	1200	1200	1800			
	3.6864	1	1	1200	600	1200			
	3.0004	1	0	600	600	900			
SG	Built-in analog signal ground. The DC voltage is approximately half of V_{DD} , so the analog interfaces signals of AI, AO, and TI with peripheral circuits which must be implemented by AC-coupling. To make this voltage source impedance lower and ensure the device performance of this device, more than 0.1 μ F bypass capacitors should be connected from SG to GND and from SG to V_{DD} .								
GND	Ground. (0 V)						_		
TI	Voice signal input. The signal input to this pin can be sent out to AO through the transmit LPF, the characteristics of which, gives the splatter filter for voice band signal. When this function is used, digital "0" must be input to ME. TI is biased to SG through internal resistor.								
	Transmit analog sign	nal output							

Transmit analog signal output.

The data put on ME and $\overline{\text{FT}}$ can set the status of AO as follows.

FT	ME	Transmit LPF	State of AO		
"1"	"1"	Dower On	MSK Signal		
"1"	"0"	Power On	Voice Signal		
"0"	"1"	Power Down	The Output of Receive BPF		
"0"	"0"	Power Down	No-signal (SG level)		

AO

The state when $\overline{\text{FI}}$ and ME = "0" is shown above. When the input digital data on $\overline{\text{FI}}$ changes to "1" from "0", AO remains to be connected to SG during about 2 ms and after that, and AO is switched to transmit LPF.

This delay time prevents AO from outputting meaningless signal during transient time from power down to on of LPF.

Name	Description							
Al	Receive analog signal input. All is biased internally to SG with about 100 k Ω same as TI.							
CDT	Device test. This pin should be connected to GND.							
CDO	Device test. This pin should be opened.							
RD	Demodulated serial data output. This data is synchronized with the re-generated timing clock RT.							
RT	Receive data timing clock output. This signal is re-generated by internal digital PLL. Synchronizing to negative edge of RT, RD is output. RT RD							
CF	Receive data timing clock is re-generated by digital PLL of which phase correcting speed can be selected with CF. When a digital "1" is put on CF and phase difference between receive data timing and RT is more than 22.5 degree, phase correcting speed is high. In this case, as the phase difference enters within 22.5 degrees, that speed changes to low immediately. When digital "0" is input to CF, phase correcting speed of PLL remains low regardless of the phase difference. Usually, CF is connected to digital "1".							
СТ	PLL's lock-in characteristics can be selected with CT. When digital "1" is put on CT, PLL requires max. 50 bit alternative data pattern. On the other hand, when digital "0" is input to CT, PLL can be locked in below 18-bit data. CF CT MIN TYP MAX UNIT 1 0 — 18 1 1 1 — 50 bit							
FT	Control signal for the internal connection of AO. Refer to column AO. When digital "0" is input to this pin, transmit LPF enters in power down mode, but the output buffer operational amplifier remains active. In this case, AO is at SG level.							
V_{DD}	Power supply. MSM6882-3: 3.6 V MSM6882-5: 5 V This device is sensitive to supply noise as switched capacitor techniques are utilized. A bypass capacitor of more than 2.2 μF between V_{DD} and GND is indispensable to ensure the performance. If an input signal is present at AI when power is turned on, the RD output may be fixed at "0". In this case, RD becomes normal when 2 bits or more of "0" signal are continually input to AI. The RD output is not fixed at "0" unless signals are input to AI for more than 10 ms after power is turned on.							

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V_{DD}	Ta = 25°C	-0.3 to 7.0	V
Input Voltage *1	Vı	With respect to GND	-0.3 to V _{DD} +0.3	\ \ \
Operating Temperature	T _{op}	_	-25 to 70	°C
Storage Temperature	T _{STG}	_	-55 to 150	°C

^{*1} MCS, ME, SD, SIN, PRE, BR, TI, AI, CDT, CF, CT, FT

RECOMMENDED OPERATING CONDITIONS

	Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit
		V	With respect to	*1	3.0	3.6	4.0	
Powe	er Supply Voltage	V_{DD}	GND	*2	4.5	5	5.5	V
		GND	_			0	_	
Oper	ating Temperature	T_{op}	_		-25	25	70	°C
Cryc	al Resonant Frequency	f	MCS = "1"		7.3721	7.3728	7.3735	MHz
Crysi	al Resoliant Frequency	f _{X'TAL}	MCS = "0"		3.6860	3.6864	3.6868	IVITIZ
Doto	Speed	т	MCS = "1", BR = "	"1"		2400	_	bit/sec
Data	Speed	T_S	BR = "0"			1200	_	bivsec
C1		_	_			2.2	_	
C2		_	_			0.1	_	
C3		_	_			0.047	_	1 _
C4		_	$R_{LX} \ge 40 \text{ k}\Omega$			0.047	_	μF
C5		_	-			0.047	_	
C6		_	_			0.1	_	
	Oscillation Frequency	_	_			7.3728	_	MHz
	Frequency Deviation	_	25 ±5°C		-100	_	+100	nnm
Crystal	Temperature Characteristics	_	At -30 to +70°C	;	-100		+100	ppm
O.	Equivalent Series Resistance	_	_		_	_	50	Ω
	Load Capacitance	_	_			16	_	pF
	Oscillation Frequency	_				3.6864	_	MHz
Frequency Deviation		_	25 ±5°C		-100	_	+100	nnm
Temperature Characteristics Equivalent Series		_	At -30 to +70°C	;	-100	_	+100	ppm
O.	Equivalent Series Resistance	_	_		_	_	100	Ω
	Load Capacitance	_			_	16	_	pF

^{*1} MSM6882-3

^{*2} MSM6882-5

ELECTRICAL CHARACTERISTICS

DC Characteristics

(MSM6882-3: V_{DD} = 3 to 4 V, Ta = -25 to 70°C) (MSM6882-5: V_{DD} = 5 ±0.5 V, Ta = -25 to 70°C)

		(IIIOIII)	02 0. V _{DD}	0 ±0.0 v	, . α .	2010100)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		Normal Operating Mode	_	4	8	
Power Supply Current *1	l _{DD}	FT = "1"	_	5.5	11	A
Power Supply Current *1		Power Down Mode	_	3.5	7	mA
	I _{DDS}	FT = "0"	_	5.0	10	
Input Leakage Current *2	I _{IL}	V _{IN} = 0 V	-10	_	10	
input Leakage Current "2	I _{IH}	$V_{IN} = V_{DD}$	-10 —		10	μА
	W	*1	0		0.6	
Input Voltage *2	V_{IL}	~1	0	_	0.8	
Input Voltage *2		*1	1.8		V _{DD}	
	V _{IH}	~1	2.2	_		V
		L = 40 ·· A/4 C ·· A	0	_	0.3	
Output Voltage *1 *3	V_{OL1}	$I_{OL} = 10 \mu A/1.6 mA$			0.4	
	V _{OH1}	Ι _{ΟΗ} = 10 μΑ/400 μΑ	0. 8V _{DD}	_	V_{DD}	

^{*1} Upper is specified for the MSM6882-3, lower for the MSM6882-5

Digital Interface Characteristics

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Data Set-up Time	t _s	Soo Fig 1	300	1	1	ns
Input Data Hold Time	t _H	See Fig.1	300	1	1	ns
Output Data Delay Time	t _D	See Fig.2	-300		300	ns

^{*2} MCS, ME, SD, SIN, PRE, BR, CF, CT, FT

^{*3} ST, RD, RT

Analog Interface Characteristics

Transmit signal output (AO)

(MSM6882-3: V_{DD} = 3 to 4 V, Ta = -25 to 70°C) (MSM6882-5: V_{DD} = 5 ±0.5 V, Ta = -25 to 70°C)

					,			,	/	
Parameter		Symbol		Condition			Тур.	Max.	Unit	
	1200	f _{M1}	FT = "1" BR = "0" BR = "1" BR = "1"	SD = "1"	1199	1200	1201			
Carrier Frequency	bps	f _{S1}		BK = 0	SD = "0"	1799	1800	1801	⊔⊸	
	2400	f_{M2}		ME = "1"	ME = "1"	DD - "1"	SD = "1"	1199	1200	1201
	bps	f_{S2}		DK - I	SD = "0"	2399	2400	2401		
Carrier Level	*1	V				-7	-3	-1	dBm	
Carrier Level	I	V_{ox}	RL ≥ 40 kΩ CL ≤ 40 pF		ME = "1"	-3	0	2	*2	
Output Amplitude	*1	V			FT = "1"	1.4	2.0	_	V	
Output Amplitude	I	V_{OPP}				2.2	3.0	_	V_{p-p}	
Output Resistance		R _{ox}		_		_	50	_	Ω	
Output Load Resistance		R_{LX}		_		40		_	kΩ	
Output Load Capac	citance	C_{LX}	_			_	_	40	pF	
Output DC Voltage)	V_{osx}		_		0.48V _{DD}	$0.50V_{DD}$	0.52V _{DD}	V	

Voice signal input (TI)

Parameter	Symbol	Co	Min.	Тур.	Max.	Unit	
Voltage Gain	GT	V_{AO}/V_{TI}		-2	0	+2	dB
Input Signal Level *1	V _{TI}	_	FT = "1"			-4	dBm
			ME = "0"	_	_	0	*2
Input Resistance	R _{TI}	f _{TI} ≤ 4 kHz		40	100	300	kΩ

Built-in signal ground (SG)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
DC Voltage	V_{SG}	Without DC Load	0.48V _{DD}	0.50V _{DD}	0.52V _{DD}	V

Receive signal input (AI)

Parameter S		Symbol	Condition			Min.	Тур.	Max.	Unit			
Input Resista	nce	R _{AI}	f _{Al} ≤ 4 kHz		Hz	40	100	300	kΩ			
Receive Signal Level		V_{IR1}				-30	_	0	dBm			
		V_{IR2}	_		BR = "1"	-24	_	0	*2			
	1200 bps	4000 hrs -		S/N at Al		7 dB	_	2×10^{-3}	_			
Bit Error			S/N at AI SIN = "1"		S/N at AI	S/N at AI	S/N at Al	S/N at AI	0.01	11 dB	_	2 × 10 ⁻⁵
Rate	2400 bps	BER		S/N	10 dB	_	2×10^{-3}	_				
					14 dB	_	2 × 10 ⁻⁵	_				

Re-generated receive data timing clock output (RT)

Parameter	Symbol	Condition			Min.	Тур.	Max.	Unit
Data Bit Number for PLL'	N _{PLL1}	CF = "1"	CT = "0"	*3	_	_	18	bit
Lock-in	N _{PLL2}		CT = "1"		_	_	50	

- *1 Upper is specified for the MSM6882-3, lower for the MSM6882-5
- *2 0 dBm = 0.775 Vrms

^{*3} Data bit number to lock-in within 22.5 degree when receiving the preamble signal (1010... modulation wave). At the beginning of receiving the signal, receive data after receiving the preamble signal of more than the number of these bits and synchronizing with the other modem.

TIMING DIAGRAM

Figure 1 Input Data Timing

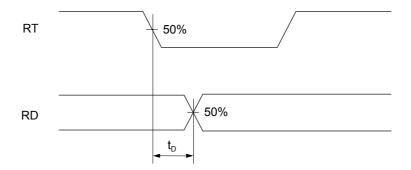
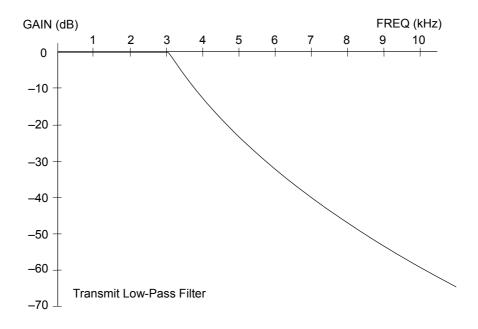
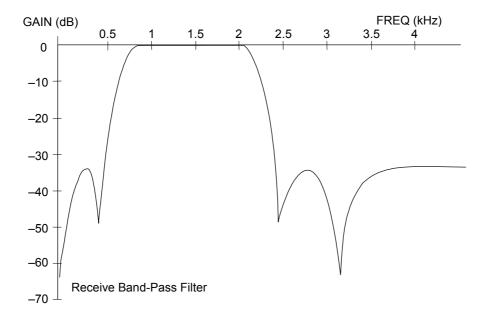
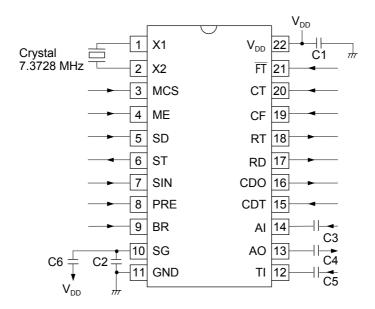
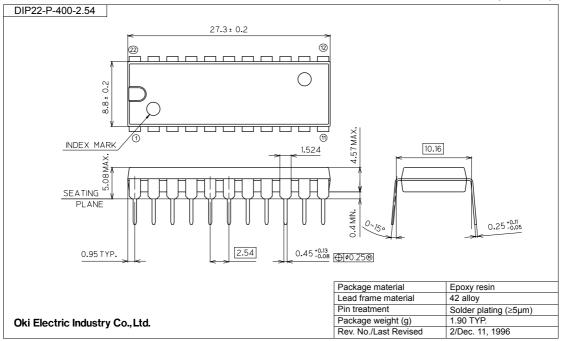
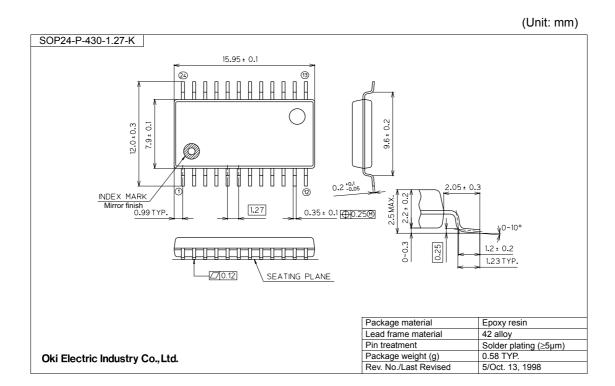




Figure 2 Output Data Timing


BUILT-IN FILTER FREQUENCY CHARACTERISTICS


Note: When BR = "1", frequency converter circuit (MIXER) is prepared before the receive BPF. Therefore, 1200 Hz input signal is converted to 3600 Hz at BPF output for example.


APPLICATION CIRCUIT

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2001 Oki Electric Industry Co., Ltd.