OKI Semiconductor

This version: Jan. 1998 Previous version: Mar. 1996

MSM6577-xx

Operatable at 0.9V and Built-in LCD Driver 4-Bit Microcontroller

GENERAL DESCRIPTION

The MSM6577 is a 4-bit microcontroller that is fabricated in OKI's low-voltage CMOS technology, enabling operation at 0.9 V. This device incorporates LCD drivers, 8-bit synchronous serial ports, and a buzzer output circuit. The MSM6577 is optimized for remote-control microcontroller applications that are portable and battery powered.

FEATURES

Operating range

Operating frequency : 32.768 kHz

Operating voltage 1.5 V operation : MSM6577K/N/S/U 3.0 V operation : MSM6577L/C/D/E

(See Mask Option List.)

Operating temperature : -20 to +70°C

Memory space
 ROM
 1536 words × 17 bits
 RAM
 128 words × 4 bits

• Minimum instruction execution time : 61 µs

• I/O port

Input-output port: $1 \text{ port} \times 4 \text{ bits}$ Input only port: $1 \text{ port} \times 4 \text{ bits}$ Output only port: $1 \text{ port} \times 4 \text{ bits}$

• Serial port : 8-bit clock synchronous type

• LCD drivers : 28

Duty and frame frequency are selectable by the mask options.

1/3 duty, 1/3 bias

: Up to 75 segments

1/2 duty, 1/3 bias

: Up to 52 segments

• Halt release timers : 4

Timer frequency is selectable by the mask options.

External interrupt : 4Buzzer output : 1

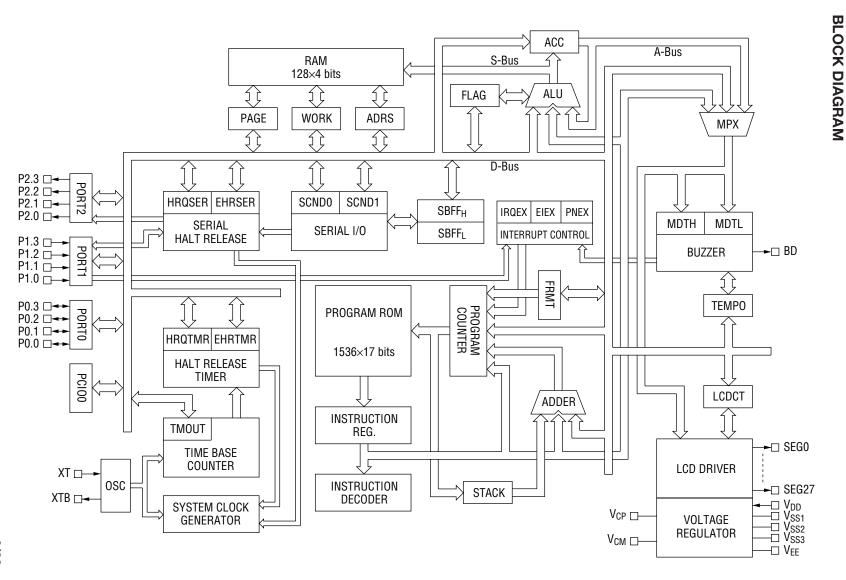
• Clock : 32.768 kHz crystal oscillator

Oscillation starts at 0.9 V.

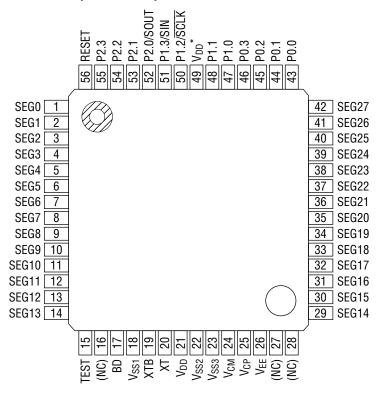
• Power supply voltage : 1.5 V/3.0 V (selectable by mask

option)

(See Mask Option List)


• Packageoptions:

56-pin plastic QFP (QFP56-P-910-0.65-K) 56-pin plastic QFP (QFP56-P-910-0.65-2K)


Chip

(Product name : $MSM6577\square - \times GS-K$) (Product name : $MSM6577\square - \times GS-2K$)

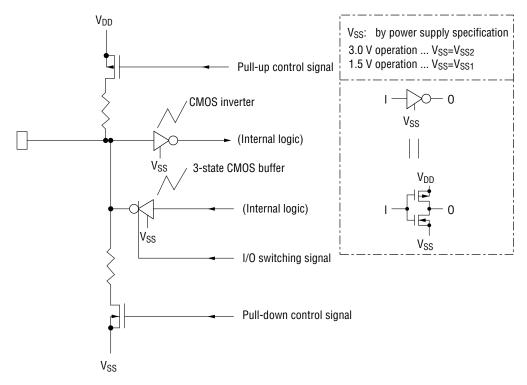
×× indicates the code number. □ indicates the option code.

PIN CONFIGURATION (TOP VIEW)

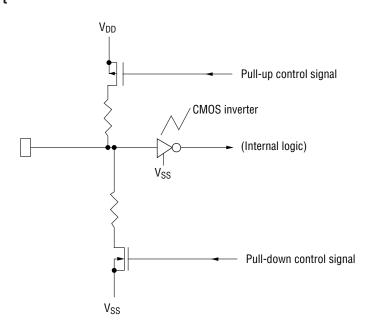
NC: No-connection pin

56-Pin Plastic QFP

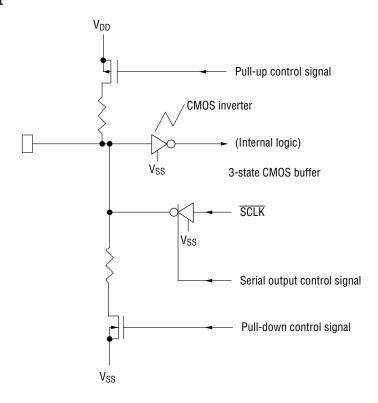
* Pin 49 (V_{DD}) is provided only when a 56-pin flat package is used.

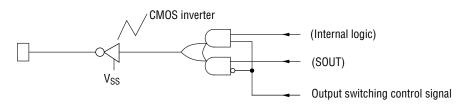

PIN DESCRIPTIONS

Symbol	Туре	Description								
PORT0	1/0	4-bit input-output port	4-bit input-output port							
(P0.0 to P0.3)		• Input or output software selecta	able.							
		• A pull-up resistor or pull-down	A pull-up resistor or pull-down resistor can be selected for each bit (P0.0 to P0.3)							
		(via mask option).								
		• When using port as output, the from the pin.	pull-up o	r pull-down i	resistor is disconnected					
PORT1	I	4-bit input port	P1.0	Evtornal	_	В				
(P1.0 to P1.3)		Pull-up resistor or pull-down	P1.1	External						
		resistor can be selected for	P1.2	Interrupt ports	Serial clock pin SCLK	С				
		PORT1 (P1.0 to P1.3) (via mask option).	P1.3	ports	Serial input pin SIN	В				
PORT2	0	4-bit output port	P2.0		Serial output pin SOUT	D				
(P2.0 to P2.3)			P2.1 to P2.3 —							
BD	0	Buzzer output pin	•			Е				
RESET	I	Reset input pin	Reset input pin							
		System reset generation level "I	H" or "L" s	electable (n	nask option)	F				
		Note : If "H" is selected, pull-dow	n resistor	is used and	if "L" is selected,					
		pull-up resistor is used.								
TEST	I	Test pin (Tie to the negative pole	of the ba	ttery.)*		G				
XT	I	Oscillation crystal connection pin				Н				
XTB	0									
V_{DD}	_	OV power supply pin				_				
V _{SS1}	_	-1.5 V power supply pin (power			·	_				
V _{SS2}	_	-3.0 V power supply pin (power	supply pi	n for –3.0 V	operation)	_				
V _{SS3}	_	-4.5 V power supply pin				_				
V_{CP}	_	Capacitor connection pin for volt	age conv	erter		_				
V _{CM}										
V _{EE}	_	Internal logic power supply pin (gulator outp	ut pin)	_				
SEG0 to	0	Liquid crystal display driving pine	3			I				
SEG27										

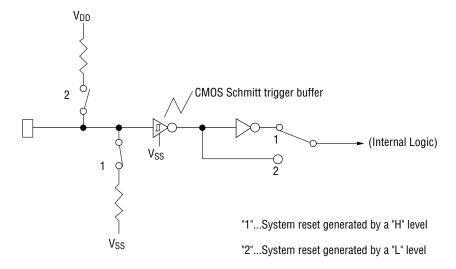

^{* 3.0} V operation $V_{SS} = V_{SS2}$ 1.5 V operation $V_{SS} = V_{SS1}$

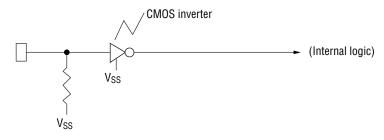
Pin Circuits

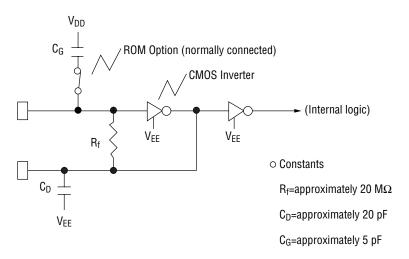

A. Input-output port

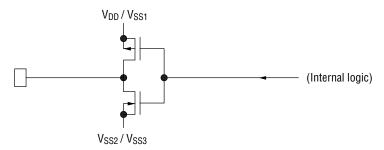

B. Input port

C. Input port


D. Output port


E. Output port, BD pin


F. RESET pin


G. TEST pin

H. Oscillation part (XT, XTB pins)

I. LCD driver

ABSOLUTE MAXIMUM RATINGS (MSM6577K/77N/77S/77U)

1.5 V operation •Backup flag (BUF)="0"

The input of the constant voltage circuit corresponds to the output of the voltage converter (V_{SS2}) . $V_{DD}=0 \ V \ (V_{SS1}=Battery \ Voltage)$

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage 1	V _{SS1}		-4.0 to +0.3	
Power Supply Voltage 2	V _{SS2}		-7.0 to +0.3	
Power Supply Voltage 3	V _{SS3}		-7.0 to +0.3	
Input Voltage	V _{IN}	Ta=25°C	V _{SS1} -0.3 to +0.3	V
Output Voltage 1 *1,*2	V ₀₁		V _{SS1} -0.3 to +0.3	
Output Voltage 2 *2	V ₀₂		V _{SS2} -0.3 to +0.3	
Output Voltage 3 *2	V ₀₃		V _{SS3} -0.3 to +0.3	
Storage Temperature	T _{STG}	_	−55 to +125	°C

^{*1} Normal output

RECOMMENDED OPERATING CONDITIONS (MSM6577K/77N/77S/77U)

1.5 V operation •Backup flag (BUF)="0"

The input of the constant voltage circuit corresponds to the output of the voltage converter (V_{SS2}). $V_{DD=0}$ V (V_{SS1} =Battery Voltage)

Parameter	Symbol	Condition	Range	Unit
Operating Voltage	V _{op}	_	−0.9 to −1.75	V
Operating Temperature	T _{op}	_	−20 to +70	°C
Oscillation Frequency	fosc	_	32.768	kHz

^{*2} LCD driver output

ELECTRICAL CHARACTERISTICS (MSM6577K/77N/77S/77U)

1.5 V operation •Backup flag (BUF)="0"

The input of the constant voltage circuit corresponds to the output of the voltage converter (V_{SS2}). ($V_{DD}=0$ V, $V_{SS1}=-1.5$ V (Battery Voltage), $V_{SS2}=-3.0$ V, $V_{SS3}=-4.5$ V

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Applicable Pin
Current Consumption	I _{DD}	*1	_	3	—	μA	_
Oscillation Start Voltage	-V _{OSC}	Within 2 sec	_	_	0.9	V	V _{SS1}
Output Current 1	-I _{OH1}	V ₀ =-0.5 V	150	_		μA	PORTO, PORT 2 *2
	I _{OL1}	V ₀ =-1.0 V	150	_	—		SOUT, SCLK
Output Current 2	-I _{0H2}	V ₀ =-0.5 V	20	_	_	μA	BD
	I _{OL2}	V ₀ =-1.0 V	20	_	—		
Output Current 3	-I _{OH3}	V _{0H} =-0.2 V	4	_	_	μA	SEG0 to SEG27
(LCD driver	I _{OMH3}	V _{OMH} =Vss1	4	_	_		
Common • Segment)		±0.2 V					
	I _{OML3}	V _{OML} =Vss2	4	_	_		
	,	±0.2 V					
	I _{OL3}	V _{0L} =-4.3 V	4	_	_		
Input Current 1	I _{IH1}	V _I =0 V, Input mode, with pull-down resistor	3.75	7.5	15	μА	PORTO, PORT1 *2
Input Current 2	-l _{IL2}	V _I =-1.5 V, Input mode, with pull-up resistor	3.75	7.5	15	μА	PORTO, PORT1 *2
Input Leakage Current	II _{IL} I	V _I =0 V, -1.5 V Input mode, without internal resistor	_	_	1	μА	PORTO, PORT1 *2 SIN, SOUT, SCLK RESET *3
Input Current 3	I _{IH3}	V _I =0 V, with pull-down resistor	30	100	200	μА	RESET *3 TEST
Input Current 4	-I _{IL4}	V _I =-1.5 V, with pull-up resistor	30	100	200	μА	RESET *3
Input Voltage	-V _{IH}	_	_	_	0.3	٧	All input pins
	-V _{IL}		1.2	_	_		

^{*1} Dependent on program ("3 µA typ." is under 5% duty of the microcontroller).

MSM6577K: System reset by a "H" level with a pull-down resistor

MSM6577N: System reset by a "H" level without a pull-down resistor

MSM6577S: System reset by a "L" level with a pull-up resistor

MSM6577U: System reset by a "L" level without a pull-up resistor

^{*2} PORT0=P0.0 to P0.3, PORT1=P1.0 to P1.3, PORT2=P2.0 to P2.3 (P1.2 is shared with SCLK, P1.3 with SOUT, and P2.0 with SIN)

^{*3} The RESET pin can be selected by mask option (with pull-down, with pull-up or without internal resistor).

ABSOLUTE MAXIMUM RATINGS (MSM6577K/N/S/U)

1.5 V operation •Backup flag (BUF)="1"

The input of the constant voltage circuit corresponds to the output of the battery (V_{SS1}) .

V_{DD}=0 V (V_{SS1}=Battery Voltage)

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage 1	V _{SS1}		-4.0 to +0.3	
Power Supply Voltage 2	V _{SS2}		-7.0 to +0.3	
Power Supply Voltage 3	V _{SS3}		-7.0 to +0.3	
Input Voltage	V _{IN}	Ta=25°C	V _{SS1} -0.3 to +0.3	V
Output Voltage 1 *1,*2	V ₀₁		V _{SS1} -0.3 to +0.3	
Output Voltage 2 *2	V ₀₂		V _{SS2} -0.3 to +0.3	
Output Voltage 3 *2	V ₀₃		V _{SS3} -0.3 to +0.3	
Storage Temperature	T _{STG}	_	−55 to +125	°C

^{*1} Normal output

RECOMMENDED OPERATING CONDITIONS (MSM6577K/N/S/U)

1.5 V operation •Backup flag (BUF)="1"

The input of the constant voltage circuit corresponds to the output of the battery (V_{SS1}).

V_{DD}=0 V (V_{SS1}=Battery Voltage)

Parameter	Symbol	Condition	Range	Unit
Operating Voltage	V _{op}	_	−0.9 to −1.75	V
Operating Temperature	T _{op}	_	−20 to +70	°C
Oscillation Frequency	f _{OSC}	_	32.768	kHz

^{*2} LCD driver output

ELECTRICAL CHARACTERISTICS (MSM6577K/N/S/U)

1.5 V operation •Backup flag (BUF)="1"

The input of the constant voltage circuit corresponds to the output of the battery (V_{SS1}).

(V_{DD}=0 V, V_{SS1}=-1.5 V (Battery Voltage), V_{SS2}=-3.0 V, V_{SS3}=-4.5 V, f_{OSC}=32.768 kHz, C_X=35 pF, Ta=25°C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Applicable Pin
Current Consumption	I _{DD}	*1	_	1.5	_	μA	_
Oscillation Start Voltage	-V _{OSC}	Within 2 sec	_	_	0.9	V	V _{SS1}
Output Current 1	-I _{0H1}	V ₀ =-0.5 V	150	_	_	μA	PORTO, PORT2 *2
	I _{OL1}	V ₀ =-1.0 V	150	_	_		SOUT, SCLK
Output Current 2	-I _{0H2}	V ₀ =-0.5 V	20	_	_	μA	BD
	I _{OL2}	V ₀ =-1.0 V	20	_	_		
Output Current 3	-I _{0H3}	V _{OH} =-0.2 V	4	_	_	μA	SEG0 to SEG27
(LCD driver	I _{OMH3}	V _{OMH} =Vss1	4	_	_		
Common • Segment)		±0.2 V					
	I _{OML3}	V _{OML} =Vss2	4	_	_		
		±0.2 V					
	I _{OL3}	V _{0L} =-4.3 V	4	_	_		
Input Current 1	I _{IH1}	V _I =0 V,	3.75	7.5	15	μA	PORTO, PORT1 *2
		Input mode,					
		with pull-down					
		resistor					
Input Current 2	-I _{IL2}	V _I =-1.5 V,	3.75	7.5	15	μA	PORTO, PORT1 *2
		Input mode,					
		with pull-up resistor					
	11 1				_		DODTO DODT4 *0
Input Leakage Current	I _{IL}	V _I =0 V, -1.5 V Input mode,	-	_	1	μA	PORTO, PORT1 *2 SIN, SOUT, SCLK
		without internal					RESET *3
		resistor					ILOLI 3
Input Current 3	1	V _I =0 V,	30	100	200		RESET *3
iliput Gurreilt 3	I _{IH3}	with pull-down	30	100	200	μA	TEST
		resistor					1201
Input Current 4	_l	V _I =-1.5 V,	30	100	200	μA	RESET *3
input ouriont 4	-I _{IL4}	with pull-up		100	200	μΛ	TILOLI U
		resistor					
Input Voltage	-V _{IH}	_	 	_	0.3	V	All input pins
1	-V _{IL}		1.2	_	_		h h
	*IL				<u> </u>		

^{*1} Dependent on program ("1.5 μ A typ." is under 5% duty of the microcontroller)

MSM6577K: System reset by a "H" level with a pull-down resistor

MSM6577N: System reset by a "H" level without a pull-down resistor

MSM6577S: System reset by a "L" level with a pull-up resistor

MSM6577U: System reset by a "L" level without a pull-up resistor

^{*2} PORT0=P0.0 to P0.3, PORT1=P1.0 to P1.3, PORT2=P2.0 to P2.3 (P1.2 is shared with SCLK, P1.3 with SOUT, and P2.0 with SIN.)

^{*3} RESET pin can be selected by mask option (with pull-down, with pull-up or without internal resistor).

ABSOLUTE MAXIMUM RATINGS (MSM6577L/C/D/E)

3.0 V operation •Backup flag (BUF)="0"

The input of the constant voltage circuit corresponds to the output of the voltage converter (V_{SS1}). $V_{DD}=0~V~(V_{SS2}=Battery~Voltage)$

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage 1	V _{SS1}		-4.0 to +0.3	
Power Supply Voltage 2	V _{SS2}		-7.0 to +0.3	
Power Supply Voltage 3	V _{SS3}		-7.0 to +0.3	
Input Voltage	V _{IN}	Ta=25°C	V _{SS2} -0.3 to +0.3	V
Output Voltage 1 *2	V ₀₁		V _{SS1} -0.3 to +0.3	
Output Voltage 2 *1,*2	V ₀₂		V _{SS2} -0.3 to +0.3	
Output Voltage 3 *2	V ₀₃		V _{SS3} -0.3 to +0.3	
Storage Temperature	T _{STG}	_	-55 to +125	°C

^{*1} Normal output

RECOMMENDED OPERATING CONDITIONS (MSM6577L/C/D/E)

3.0 V operation •Backup flag (BUF)="0"

The input of the constant voltage circuit corresponds to the output of the voltage converter (V_{SS1}). $V_{DD}=0\ V\ (V_{SS2}=Battery\ Voltage)$

Parameter	Symbol	Condition	Range	Unit
Operating Voltage	V _{op}	_	−1.8 to −3.5	V
Operating Temperature	T _{op}	_	−20 to +70	°C
Oscillation Frequency	f _{OSC}	_	32.768	kHz

^{*2} LCD driver output

ELECTRICAL CHARACTERISTICS (MSM6577L/C/D/E)

3.0 V operation •Backup flag (BUF)="0"

The input of the constant voltage circuit corresponds to the output of the voltage converter (V_{SS1}). ($V_{DD}=0$ V, $V_{SS1}=-1.5$ V, $V_{SS2}=-3.0$ V (Battery Voltage), $V_{SS3}=-4.5$ V, $V_{SS2}=-3.0$ V, $V_{SS3}=-4.5$ V, $V_{SS2}=-3.0$ V (Battery Voltage)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	Applicable Pin
Current Consumption	I _{DD}	*1	_	0.75	_	μA	_
Oscillation Start Voltage	-V _{OSC}	Within 2 sec	_	_	1.8	V	V_{SS2}
Output Current 1	-I _{OH1}	V ₀ =-0.5 V	500	_	_	μΑ	PORTO, PORT2 *2
	I _{OL1}	V ₀ =-2.5 V	500	_	_		SOUT, SCLK
Output Current 2	-I _{0H2}	V ₀ =-0.5 V	20	_	_	μΑ	BD
	I _{OL2}	V ₀ =-2.5 V	20	_	_		
Output Current 3	-I _{OH3}	V _{OH} =-0.2 V	4	_	_	μA	SEG0 to SEG27
(LCD driver	I _{OMH3}	V _{OMH} =Vss1	4	_	_		
Common/Segment)		±0.2 V					
	I _{OML3}	V _{OML} =Vss2	4	_	_		
	'	±0.2 V					
	I _{OL3}	V _{0L} =-4.3 V	4	_	_		
Input Current 1	I _{IH1}	V _I =0 V,	60	120	240	μA	PORTO, PORT1 *2
		Input mode,					
		with pull-down					
		resistor					
Input Current 2	-I _{IL2}	V _I =-3.0 V,	60	120	240	μΑ	PORTO, PORT1 *2
		Input mode,					
		with pull-up					
		resistor					
Input Leakage Current	I _{IL}	V _I =0 V, -3.0 V	_	_	1	μΑ	PORTO, PORT1 *2
		Input mode,					SIN, SOUT, SCLK
		without internal					RESET *3
		resistor					
Input Current 3	I _{IH3}	V _I =0 V,	200	750	1500	μΑ	RESET *3
		with pull-down					TEST
		resistor					
Input Current 4	-I _{IL4}	V _I =-3.0 V,	200	750	1500	μA	RESET *3
		with pull-up					
		resistor					
Input Voltage	-V _{IH}	_		_	0.5	V	All input pins
	-V _{IL}		2.5	_	_		

^{*1} Dependent on program ("0.75 µA typ." is under 5% duty of the MCU.)

MSM6577L: System reset by a "H" level with a pull-down resistor

MSM6577C: System reset by a "H" level without a pull-down resistor

MSM6577D: System reset by a "L" level with a pull-up resistor

MSM6577E: System reset by a "L" level without a pull-up resistor

^{*2} PORT0=P0.0 to P0.3, PORT1=P1.0 to P1.3, PORT2=P2.0 to P2.3 (P1.2 is shared with SCLK, P1.3 with SOUT, and P2.0 with SIN.)

^{*3} RESET pin can be selected by mask option (with pull-down, with pull-up or without internal resistor).

ABSOLUTE MAXIMUM RATINGS (MSM6577L/C/D/E)

3.0 V operation •Backup flag (BUF)="1"

The input of the constant voltage circuit corresponds to the output of the battery (V_{SS2}).

V_{DD}=0 V (V_{SS2}=Battery Voltage)

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage 1	V _{SS1}		-4.0 to +0.3	
Supply Voltage 2	V _{SS2}		-7.0 to +0.3	
Supply Voltage 3	V _{SS3}		-7.0 to +0.3	
Input Voltage	V _{IN}	Ta=25°C	V _{SS2} -0.3 to +0.3	V
Output Voltage 1 *2	V ₀₁		V _{SS1} -0.3 to +0.3	
Output Voltage 2 *1,*2	V ₀₂		V _{SS2} -0.3 to +0.3	
Output Voltage 3 *2	V ₀₃		V _{SS3} -0.3 to +0.3	
Storage Temperature	T _{STG}	_	-55 to +125	°C

^{*1} Normal output

RECOMMENDED OPERATING CONDITIONS (MSM6577L/C/D/E)

3.0 V operation •Backup flag (BUF)="1"

The input of the constant voltage circuit corresponds to the output of the battery (V_{SS2}).

V_{DD}=0 V (V_{SS2}=Battery Voltage)

Parameter	Symbol	Condition	Range	Unit
Operating Voltage	V _{op}	_	−0.9 to −3.5	V
Operating Temperature	T _{op}	_	−20 to +70	°C
Oscillation Frequency	f _{OSC}	_	32.768	kHz

^{*2} LCD driver output

ELECTRICAL CHARACTERISTICS (MSM6577L/C/D/E)

3.0 V operation •Backup flag (BUF)="1"

The input of the constant voltage circuit corresponds to the output of the battery (V_{SS2}) .

(V_{DD}=0 V, V_{SS1}=-1.5 V, V_{SS2}=-3.0 V (Battery Voltage), V_{SS3}=-4.5 V, f_{OSC}=32.768 kHz, C_X=35 pF, Ta=25°C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Applicable Pin
Current Consumption	I _{DD}	*1	_	1.5	_	μA	_
Oscillation Start Voltage	-V _{OSC}	Within 2 sec	_	_	0.9	V	V_{SS2}
Output Current 1	-I _{0H1}	V ₀ =-0.5 V	500	_	_	μA	PORTO, PORT2 *2
	I _{OL1}	V ₀ =-2.5 V	500	_	_		SOUT, SCLK
Output Current 2	-l _{0H2}	V ₀ =-0.5 V	20	_	_	μA	BD
	I _{OL2}	V ₀ =-2.5 V	20	_	_		
Output Current 3	-I _{OH3}	V _{0H} =-0.2 V	4	_	_	μA	SEG0 to SEG27
(LCD driver	I _{OMH3}	V _{OMH} =Vss1	4	_	_		
Common • Segment)		±0.2 V					
	I _{OML3}	V _{OML} =Vss2	4	_	_		
	, , , , , ,	±0.2 V					
	I _{OL3}	V _{0L} =-4.3 V	4	_	_		
Input Current 1	I _{IH1}	V _I =0 V,	60	120	240	μA	PORTO, PORT1 *2
		Input mode,					
		with pull-down					
		resistor					
Input Current 2	-I _{IL2}	V _I =-3.0 V,	60	120	240	μA	PORTO, PORT1 *2
		Input mode,					
		with pull-up					
		resistor					
Input Leakage Current	IIL	V _I =0 V, −3.0 V	_	—	1	μA	PORTO, PORT1 *2
		Input mode,					SIN, SOUT, SCLK
		without internal resistor					RESET *3
			000		4500		DE057 +0
Input Current 3	I _{IH3}	V _I =0 V,	200	750	1500	μA	RESET *3
		with pull-down resistor					TEST
Innut Comment 4			000	750	1500		DECET *0
Input Current 4	-I _{IL4}	V _I =-3.0 V, with pull-up	200	750	1500	μA	RESET *3
		resistor					
Input Voltage	V	10010101			0.5	V	All input pins
mput voitage	-V _{IH}	_	2.5		0.5	V	All llihat hills
	-V _{IL}		2.0	_	_		

^{*1} Dependent on program ("1.5 μA typ." is under 5% duty of the MCU.)

MSM6577L: System reset by a "H" level with a pull-down resistor

MSM6577C: System reset by a "H" level without a pull-down resistor

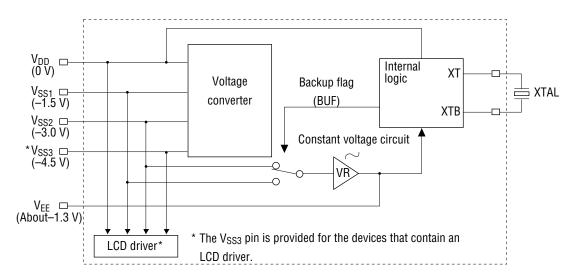
MSM6577D: System reset by a "L" level with a pull-up resistor

MSM6577E: System reset by a "L" level without a pull-up resistor

^{*2} PORT0=P0.0 to P0.3, PORT1=P1.0 to P1.3, PORT2=P2.0 to P2.3 (P1.2 is shared with SCLK, P1.3 with SOUT, and P2.0 with SIN.)

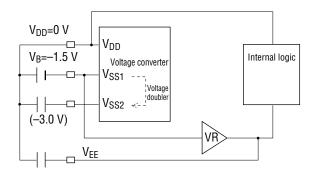
^{*3} RESET pin can be selected by mask option (with pull-down, with pull-up or without internal resistor).

MASK OPTION LIST


The device names for the MSM6577-xx are differentiated as follows, depending on the combination of a power supply voltage and RESET pin function.

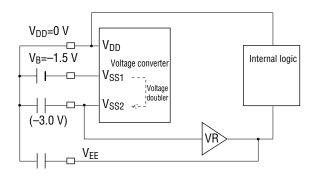
No.	Battery	RESET Pin Function	Device
1	1.5 V operation	System reset by a "H" level with a pull-down resistor	MSM6577K-xx
2	1.5 V operation	System reset by a "H" level without a pull-down resistor	MSM6577N-xx
3	1.5 V operation	System reset by a "L" level with a pull-up resistor	MSM6577S-xx
4	1.5 V operation	System reset by a "L" level without a pull-up resistor	MSM6577U-xx
5	3.0 V operation	System reset by a "H" level with a pull-down resistor	MSM6577L-xx
6	3.0 V operation	System reset by a "H" level without a pull-down resistor	MSM6577C-xx
7	3.0 V operation	System reset by a "L" level with a pull-up resistor	MSM6577D-xx
8	3.0 V operation	System reset by a "L" level without a pull-up resistor	MSM6577E-xx

NOTES ON USE


Power Supply for 0.9 V Microcontroller Series: Backup Flag and Constant-Voltage Circuit

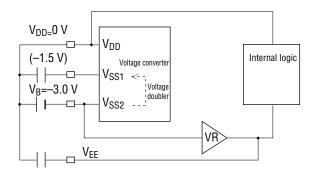
The 0.9 V microcontroller series have a built-in constant-voltage circuit. The output of this constant-voltage circuit powers the microcontroller's internal logic circuits. Setting a backup flag (BUF) allows the input of the constant voltage circuit to be switched to either the battery or the output generated in the voltage converter, based on the battery voltage. A battery voltage of 1.5 V or 3.0 V can be selected.

The output (V_{EE}) of the constant-voltage circuit is set at approximately -1.3 V. This allows the current consumed by the internal logic to be limited, irrespective of the battery voltage. However, if the input of the constant voltage circuit is below this set value (about -1.3 V), the output (V_{EE}) is equal to the input. The 0.9 V microcontroller can be operated even if the internal voltage (output from the constant-voltage circuit) falls to 0.9 V. Setting the backup flag allows a larger operating voltage margin despite changes in internal voltage due to noise. For example, for the 1.5 V operation, setting the backup flag to "0" supplies twice the battery voltage to the constant-voltage circuit. Thus, even if the battery voltage falls to 0.9 V, the output voltage (V_{EE}) is maintained at -1.3 V, providing a larger margin of operating voltage of the internal logic circuits because 1.8 V is applied to the input of the constant-voltage circuit. Figures 1 to 4 show the internal status depending on the backup flag settings for the battery, as well as status features.


(Figure 1) 1.5 V Operation (Backup Flag="1")

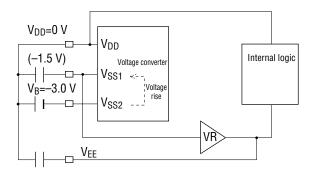
Internal status	The battery level V_{SS1} is applied to the input of the constant voltage circuit.
Operating range	−0.9 to −1.75 V
Current consumption	1.5 μΑ*
Feature	When the battery level is powered down, the internal circuit is powered directly by the battery.

^{*} When the software duty is about 5%


(Figure 2) 1.5 V Operation (Backup Flag="0")

Internal status	A doubled level of V_{SS2} is applied to the input of the constant voltage circuit.
Operating range	−0.9 to −1.75 V
Current consumption	3 μΑ*
Feature	When the baftery level is powered down, a larger operating voltage margin is gained, compared to the case of Figure 1.

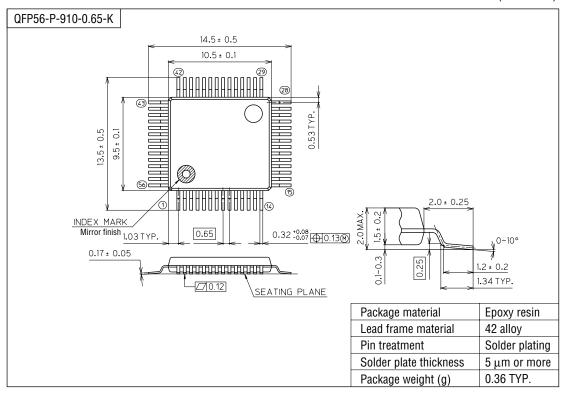
 $^{^{\}star}$ When the software duty is about 5%


(Figure 3) 3.0 V Operation (Backup Flag="1")

Internal status	The battery level V_{SS2} is applied to the input of the constant voltage circuit.
Operating range	−0.9 to −3.5 V
Current consumption	1.5 μΑ*
Feature	When the battery level is powered down, the internal circuit is powered directly by the battery.

^{*} When the software duty is about 5%

(Figure 4) 3.0 V Operation (Backup Flag="0")

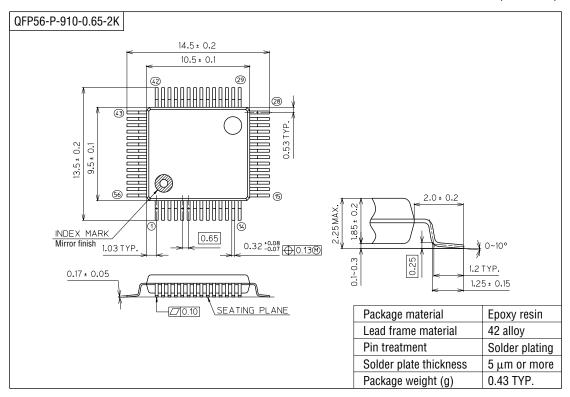


Internal status	A doubled level of $\rm V_{SS1}$ is applied to the input of the constant voltage circuit.
Operating range	-1.8 to -3.5 V
Current consumption	0.75 μΑ*
Feature	When the battery level is powered down, a smaller operating voltage margin is gained, compared to the case of Figure 3.

 $^{^{\}star}$ When the software duty is about 5%

PACKAGE DIMENSIONS

(Unit: mm)



Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).