Built-in 8-Bit A/D Converter 4-Bit Microcontroller

GENERAL DESCRIPTION

The MSM64431 is a high-performance 4-bit microcontroller that incorporates OKI's nX-4/20 CPU core.
The MSM64431 has a minimum instruction execution time of 714 ns (@4.2 MHz) and contains a 1024-byte program memory, a 64-nibble data memory, four I/O ports (16 bits in total) , an 8bit 4-channel A/D converter, and a time base counter.
Applications include various types of controllers, remote-controllers, home appliances such as fans, and toys.

FEATURES

- Operating range

Operating frequency : 500 kHz to 4.2 MHz
Operating voltage
: 4.5 to 5.5 V
Operating temperature
: -40 to $+85^{\circ} \mathrm{C}$

- Internal program memory
: 1024 bytes
- Internal data memory
- Minimum instruction execution time
: 64 nibbles
- A/D converter
: 714 ns @ 4.2 MHz
- I/O port

Input-output port
Input port
Output port
: 8-bit; 4 channels

- External interrupt
: 1 port $\times 4$ bits
: 2 ports $\times 4$ bits
: 1 port $\times 4$ bits
- Interrupt sources
: 1
- Package options:

24-pin plastic DIP (DIP24-P-600-2.54) : (Product name : MSM64431-×××RS)
24-pin plastic SOP (SOP24-P-430-1.27-K) : (Product name : MSM64431-×××GS-K)
$x \times x$ indicates the code number.

BLOCK DIAGRAM

PIIN CONFIGURATION (TOP VIEW)

24-Pin Plastic SOP

24-Pin Plastic DIP

PIN DESCRIPTIONS

Function	Symbol	Type	Description
Power supply	$V_{D D}$	-	+5 V digital power supply
	GND	-	0 V digital ground
	$\mathrm{AV}_{\mathrm{DD}}$	-	+5 V analog power supply
	AGND	-	0 V analog ground
Oscillation	OSCO	1	Oscillation input/external clock input
	OSC1	0	Oscillation output
Control	$\overline{\text { RESET }}$	I	System reset (starts from address 0)
	TEST	I	Test only input
Ports	PORT 0	1	4-bit input port. P0.O's secondary function is an external interrupt input.
	PORT 1	1/0	4-bit input-output port
	PORT 2	0	4-bit output port
	PORT 3	1	4-bit input port. This port becomes an analog input channel at A/D conversion when set to perform its secondary function.

MEMORY MAPS

Program Memory

Program Memory Map
Address 000 H is the instruction execution start address after system reset.
The CZP area from address 010 H to address 01 FH is the start address area for the CZP subroutine of one-byte call instruction.
The interrupt address from address 020 H to 03 DH is assigned the start address of interrupt subroutines.

Data Memory

Data memory is composed of eight banks with 256 nibbles (256×4 bits) in each bank. In data RAM, BANK 7 is assigned 64 nibbles and BANK 0 is assigned to Special Function Registers.

Data memory map

The stack area is memory that starts at address 7FFH and extends downwards.
Four nibbles are used by subroutine call instructions and eight nibbles are used when interrupts are generated.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	$\mathrm{V}_{\mathrm{DD}}=A V_{\text {DD }}$	$\begin{gathered} \mathrm{Ta}=25^{\circ} \mathrm{C} \\ \text { GND }=\mathrm{AGND}=0 \mathrm{~V} \end{gathered}$	-0.3 to 7.0	V
Input voltage	V_{1}		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
Output voltage	V_{0}		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
Analog input voltage	$\mathrm{V}_{\text {AI }}$		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
Storage temperature	$\mathrm{T}_{\text {STG }}$	-	-55 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Power supply voltage	$\mathrm{V}_{\mathrm{DD}}=\mathrm{AV}$			
Operating temperature	T_{Op}	-500 kHz to 4.2 MHz	4.5 to 5.5	V

ELECTRICAL CHARACTERISTICS

DC Characteristics

$$
\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{AV} \mathrm{DD}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=\mathrm{AGND}=0 \mathrm{~V}, \mathrm{Ta}=-40 \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
"H" input voltage *1	$\mathrm{V}_{\mathrm{H}+1}$	-	$0.5 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
"H" input voltage *2	$\mathrm{V}_{\mathrm{H} 2}$	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
"L" input voltage *3	V_{IL}	-	0	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
"H" output current *4	I_{OH}	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$	1.0	-	-	mA
"L" output current *4	l0L1	$\mathrm{V}_{0 L 1}=0.4 \mathrm{~V}$	-1.6	-	-	mA
"L" output current *5	loL2	$\mathrm{V}_{\text {OL2 }}=1.2 \mathrm{~V}$	-10	-	-	mA
input leakage current *6	lL	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{D}} / \mathrm{OV}$	-	-	± 5	$\mu \mathrm{A}$
Output leakage current *5	ILO	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{D D} / 0 \mathrm{~V}$	-	-	± 5	$\mu \mathrm{A}$
Pull-up resistance ${ }^{*} 7$	RPU	-	20	40	80	$\mathrm{k} \Omega$
Pull-down resistance *8	RpD	-	2	5	15	$\mathrm{k} \Omega$
Analog reference power supply current	$\mathrm{I}_{\text {REF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{AV} \mathrm{DD}=5 \mathrm{~V} \\ & \mathrm{GND}=\mathrm{AGND}=0 \mathrm{~V} \end{aligned}$	-	0.5	2.0	mA
Operating current consumption	IDD	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=\mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{f}=4.2 \mathrm{MHz} \text { (no load) } \end{gathered}$	-	-	3	mA
Current consumption at HALT *9	IdDH	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=A \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{f}=4.2 \mathrm{MHz} \text { (no load) } \end{aligned}$	-	-	300	$\mu \mathrm{A}$
Stand-by current *9	IdDS	$\begin{aligned} & V_{D D}=A V_{D D}=2 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	2	$\mu \mathrm{A}$

*1 Except OSC0, TEST and $\overline{\text { RESET }}$
*2 OSC 0, TEST and $\overline{\text { RESET }}$
*3 All input pins
*4 P1, P2
*5 P2
*6 P0, P1, P3
*7 RESET, P0, P3
*8 TEST
*9 I

A/D Converter Characteristics

(1) When $\mathrm{f}=1 \mathrm{MHz}$

$$
\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{AV} \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=\mathrm{AGND}=0 \mathrm{~V}, \mathrm{Ta}=-40 \text { to } 85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Resolution	n	Refer to the recommended circuit (Figure 1). Analog input source impedance $\mathrm{RI} \leq 5 \mathrm{k} \Omega$	-	-	8	bit
Linearity error	E_{L}		-	-	$\begin{aligned} & +1 \\ & -1 \end{aligned}$	LSB
Differential linearity error	E_{D}		-	-	± 0.5	LSB
Crosstalk	$\mathrm{E}_{\text {ct }}$	Refer to the measuring circuit (Figure 2).	-	-	± 0.5	LSB
Conversion time	tconv	$\mathrm{fosc}^{\text {c }} 1 \mathrm{MHz}$	-	60	-	$\mu \mathrm{s} / \mathrm{CH}$

(2) When $\mathrm{f}=4.2 \mathrm{MHz}$

	$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{AV} \mathrm{VDD}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=\mathrm{AGND}=0 \mathrm{~V}, \mathrm{Ta}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$					
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Resolution	n	$\begin{array}{c}\text { Refer to the } \\ \text { recommended circuit } \\ \text { (Figure 1). }\end{array}$	-	-	8	bit
Linearity error	E_{L}	-	-	+1.5	LSB	
Analog input						
source impedance						
$\mathrm{RI} \leq 5 \mathrm{k} \Omega$						

Definition of Terms

Resolution Capacity

Linearity Error

Differential

Linearity Error

This refers to the minimum input analog value that is distinguishable. For 8 bits, $2^{8=}=256\left(A V_{\mathrm{DD}}\right.$ П256) can be resolved.

This refers to the variance between the ideal characteristics of an 8 -bit A/D converter and the actual conversion characteristics when no quantitized error is involved.
Ideal conversion characteristics refer to steps that divide the voltage between $A V_{D D}$ and AGND into 256.

This refers to the smoothness of the conversion characteristics.
The width of analog input voltage corresponding to the variation of digital output for 1 bit is ideally $1 \mathrm{LSB}=\mathrm{AV} \mathrm{VDD}_{\mathrm{DD}} \Pi 256$. The difference between this ideal bit size and a bit size at an arbitrary point in the conversion range is called differential linearity error.

$\mathrm{RI}($ Analog input source impedance $) \leq 5 \mathrm{k} \Omega$
Figure 1. Recommended circuit

Analog input. The difference in the A/D conversion results between the identical analog input applied to AI 0-3 and the result by the left figure is taken to be caused by crosstalk.

Figure 2. Crosstalk measuring circuit

PACKAGE DIMENSIONS

(Unit : mm)

Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

