OKI Semiconductor

MSM5267B-15

33-BIT VFD SEGMENT DRIVER

GENERAL DESCRIPTION

The MSM5267B-15 is a CMOS multi-digit display driver and consisting of a 34-bit shift register, a 33-bit latch, and a 33-bit VF tube driver.

FEATURES

- Complete static operation to ensure stability against noise.
- 3 or 4-signal line connection with microcomputers.
- Direct driver of VF tubes (8 outputs of high-current drive, 25 outputs of low-current drive)
- Capability of self-load mode.
- Low power consumption.
- Signal power supply and operating voltage range of 8 V to 18 V .
- 40-pin Plastic DIP (DIP40-P-600)
- 44-pin "V" Plastic QFP (QFP44-P-910-VK)
- 44-pin Plastic QFJ (PLCC) (QFJ44-P-S650)

BLOCK DIAGRAM

PIN CONFIGURATION

Note) Pin 17 and Pin 39 are internally connected to VdD. Therefore, those pins can not be connected to any other pin than Vdd.

PIN DISCRIPTION

PIN No.	Pin Name	Comments
1	Vdo	Input Positive Supply Voltage Terminal
2	Data	Input Data Acquisition Terminal
3	Clock	Input Clock Terminal
4	Output 1	Output Shift Register 32
5	Output 2	Output Shift Register 21
6	Output 3	Output Shift Register 22
7	Output 4	Output Shift Register 23
8	Otuput 5	Output Shift Register 30
9	Otuput 6	Output Shift Register 13
10	Otuput 7	Output Shift Register 14
11	Output 8	Output Shift Register 15
12	Output 9	Output Shift Register 1
13	Output 10	Output Shift Register 33
14	Output 11	Output Shift Register 5
15	Output 12	Output Shift Register 6
16	Output 13	Output Shift Register 7
17	Output 14	Output Shift Register 28
18	Output 15	Output Shift Register 27
19	Otuput 16	Output Shift Register 31
20	Otuput 17	Output Shift Register 18
21	Otuput 18	Output Shift Register 2
22	Output 19	Output Shift Register 10
23	Output 20	Output Shift Register 26
24	Output 21	Output Shift Register 29
25	Output 22	Output Shift Register 3
26	Output 23	Output Shift Register 8
27	Output 24	Output Shift Register 9
28	Output 25	Output Shift Register 4
29	Output 26	Output Shift Register 11
30	Otuput 27	Output Shift Register 16
31	Otuput 28	Output Shift Register 17
32	Otuput 29	Output Shift Register 12
33	Output 30	Output Shift Register 19
34	Output 31	Output Shift Register 24
35	Output 32	Output Shift Register 25
36	Output 33	Output Shift Register 20
37	Data Out	Output Data Shift Register
38	Load Enable	Input for Loading Word into Data Latch from Data Shift Register
39	Vss	Ground Potential Terminal
40	Blank	Input for Turning Output Drivers off

ELECTRICAL CHARACTERISTICS

- Absolute Maximum Ratings
$\mathrm{Ta}=25^{\circ} \mathrm{C}$, Unless otherwise specified

Parameter	Symbol	Condition	Min	Max	Unit
Supply voltage	VDD	-	-0.3	20	V
Input voltage	VI	-	-0.3	$\mathrm{VDD}+0.3$	V
Operating Temperature	Ta	-	-40	85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tst	-	-65	150	${ }^{\circ} \mathrm{C}$

AC CHARACTERISTICS

$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=8 \mathrm{~V}$ to 18 V Unless otherwise specified

Characteristics	Symbol	Condition	MIN	MAX	Units
Clock Frequency	Fc	-	-	160	kHz
Clock Pulse Width	PWC	Either positive or negative	2.5	-	$\mu \mathrm{S}$
Slew Rate	tr	CL=100pF, $\mathrm{t}=20 \%$ to 80% or 80% to 20% of VDD VDD $=8 \mathrm{~V}$ or VDD=18V	-	5	$\mu \mathrm{~S}$
Outputs; (1-33)	ts	-	1	-	$\mu \mathrm{S}$
Data Setup Time	-	200	-	nS	
Data Hold Time	th	-	-	7	$\mu \mathrm{~S}$
Output Delay from Blank	todB	CL=100pF VDD=8V	-	8	$\mu \mathrm{~S}$
Output Delay from Load	todL	CL=100pF VDD=8V	0.001	10	$\mathrm{~V} / \mu \mathrm{S}$
Power on Reset Slew Rate	PRSR	-	1.6	-	$\mu \mathrm{S}$
Load Pulse Width	PWL	-			

- Timing Chart

DC CHARACTERISTICS

$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$ Unless otherwise specified

Characterristic	Symbpl	Conditions		MIN	MAX	Unit
High Level input Voltage	VIH	V $\mathrm{d}=8$ 8 to 18 V		3.5	Vdd+0.3	V
Low Level Input Voltage	VIL	V $\mathrm{d}=8$ 8 to 18 V		-0.3	0.8	V
High Input Current (PIN 2,3,38)	ІІн1	Vdo =8 to 18V, V I $=\mathrm{V}$ do		-	1	$\mu \mathrm{A}$
Low Input Current (PIN 2,3,38)	IIL1	Vdo=8 to 18V, VI=Vss		-	-1	$\mu \mathrm{A}$
High Input Current (PIN 40)	ІІн2	$\mathrm{V} \mathrm{DD}=8$ to $18 \mathrm{~V}, \mathrm{~V}=3.5 \mathrm{~V}$		-5	-125	$\mu \mathrm{A}$
Low Input Current (PIN 40)	IIL2	Vdo=8 to 18V, V I=Vss		-5	-125	$\mu \mathrm{A}$
Supply Current	IDD	Vod=8 to 16V, All Outputs open$\mathrm{Ta}=-40^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$		-	10	mA
		VDD=8 to 16V, All Outputs open$\mathrm{Ta}=85^{\circ} \mathrm{C}$		-	7	mA
Low Current Output Drivers (ON) (PIN4-16, 25-36)	Voh1	VDD $=9.5 \mathrm{~V}$, $\mathrm{IOH}=-1.5 \mathrm{~mA}$	$\begin{gathered} \mathrm{Ta}=25^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Vdo-0.3	-	
			$\mathrm{Ta}=85^{\circ} \mathrm{C}$	Vdd-0.5	-	V
High Current Output Drivers (ON)(PIN 17-24)	VoH2	$\mathrm{VDD}=9.5 \mathrm{~V}$, $\mathrm{IOH}=-6 \mathrm{~mA}$	$\begin{gathered} \mathrm{Ta}=25^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Vdo-0.3	-	V
			Ta $=85^{\circ} \mathrm{C}$	VdD-0.5	-	
	VoH2	VDD $=9.5 \mathrm{~V}$, $\mathrm{IOH}=-30 \mathrm{~mA}$	$\begin{gathered} \mathrm{Ta}=25^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \end{gathered}$	Vdo-2.0	-	V
			Ta $=85^{\circ} \mathrm{C}$	Vdo-2.5	-	
Output Drivers (OFF) (PIN 4-36)	VoL	Vdo $=9.5 \mathrm{~V}, \mathrm{lol}=1 \mu \mathrm{~A} / 500 \mu \mathrm{~A}$		-	$\begin{aligned} & \text { Vss }+0.2 \\ & / \text { Vss }+5 \end{aligned}$	V
High Voltage Data out (PIN 37)	Vонס	Vod9.5V, lohd $=-500 \mu \mathrm{~A}$		Vod-5	-	V
Low Voltage Dataout (PIN 37)	Vold	$\mathrm{lold}=1 \mu \mathrm{~A}$		-	Vss + 0.4	V

FUNCTIONAL DESCRIPTION

- Data Input

The data pattern (33 bits) supplied to the device through this input control the output driver state (On or Off).

1. A high level turns the output driver on.
2. A low level turns the output driver off.

- Clock Input

A Positive transition of the clock loads and shifts the data. This input also has a Schmitt trigger which provides 0.3 volts of hysteresis.

- Blanking Input

A low-level voltage at this pin turns the output drivers off; an internal pull up is provided on this pin.

- Load Enable

A high-level at this input transfers the data from the shift register to the data latch, and sets the shift register to zero.
First data bit read-in stored in a shift register \#1, the last data bit read-in is stored in a shift register \#33. When the shift registers are full, a high voltage level applied to the load enable input will transfer the data from the shift register to the data latch, and then to the output. The device has 34 shift registers and 33 data latches as shown in the functional block diagram.
There are two modes of operation:

- Self-Load Mode

In this mode Data Out (pin37) is connected to Load Enable (pin38), and the data word is constructed with 33 bits (including the one self-load bit set tologic 1). At the 34th clock pulse, the data is transferred from the shift register to the data latch and the output drivers. Before the next clock pulse, the registers are zeroed.

- Non-Self-Load Mode

In this mode, the Data Out and the Load Enable pins are not connected, and the Load Enable input is controlled by an external source. (There are two types of operation in this mode.)

1. The data word consists of 34 bits (including one self-load bit). To transfer data from the shift registers to the data latch, a high-level voltage is applied to the Load Enable pin before the rise of the clock pulse following the 34th clock pulse.
2. The data word consists of 33 bits without the self-load bit. To transfer the data, a high voltage level is applied to the Load Enable pin before the rise of the 34th clock pulse.

When the display driver is used in a cascade configuration, a filler bit must be inserted between each group of 33 data bits. The filler bit must be logic 1 when used with the self-loading mode and a logic 0 when used in the non-self-loading mode.

When the cascaded devices are used in self-load mode. The Data Out pin of the last device must be connected to the Load Enable pin of all devices as shown in the above figure.

When two display drivers are cascaded, sufficient on-chip time delays allow the system to operate within the specification of the device and work in a system.

Up to 10 driver inputs may be connected to the Data Out pin (pin37) of the last device.
Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

