48-Bit Grid/Anode Driver

GENERAL DESCRIPTION

The MSC1212-01 is a driver IC for VFD implemented in BiCMOS technology.
The circuit consists of a 48-bit shift register and a 48-bit latch; they control display data, which is output from the display drivers.
Since a 64-pin plastic QFP package is used, the display unit size can be reduced.

FEATURES

- Logic supply voltage (V_{CC})
- Driver supply voltage (V $\mathrm{V}_{\text {DISP }}$)
- Operating temperature range
- Driver output current
- Built-in 48-bit output Driver (with latch)
- Built-in 48-bit shift register
- Clock frequency : 0.5 MHz
- Package:

64-pin plastic QFP (QFP64-P-1414-0.80-BK) (Product name: MSC1212-01GS-BK)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

NC: No-connection pin

64-Pin Plastic QFP

INPUT AND OUTPUT CONFIGURATION

- Schematic Diagrams of Logic Portion Input Circuit

- Schematic Diagrams of Logic Portion Input • Schematic Diagrams of Logic Portion Input Circuit (Pull-up) Circuit (Pull-down)

- Schematic Diagrams of Logic Portion Output •Schematic Diagrams of Driver Output Circuit Circuit

PIN DESCRIPTION

Function	Pin	Symbol	Description
Driver Output	1 to 17 32 to 48 50 to 63	$\begin{gathered} \text { HVO1 } \\ \text { to } \\ \text { HVO48 } \end{gathered}$	Driver output pins, applicable to each bit of shift register.
Driver Power Supply	19,30	VIISP	Power supply pins for driver circuit. Both Pin 19 and 30 should be connected externally.
Logic Power Supply	27	$V_{C C}$	Power supply pin for logic.
Driver GND	20, 29	D-GND	GND pins for the driver circuit. Both Pin 20 and 29 should be connected externally.
Logic GND	21	L-GND	GND pin for the logic circuit.
Data Input	22	DIN	Input pin without pull-up or pull-down resistor. Input pin of shift register. Display data input is synchronized with clock signal. (positive logic)
Clock Input	23	CLK	Input pin without pull-up or pull-down resistor. Data of shift register is shifted from one stage to the next on application of each clock rising edge.
Latch Strobe Input	24	LS	Input pin without pull-up or pull-down resistor. When LS is at "H" level, the latch is shunted and the shift register output becomes the lacth output. When LS is at "L" level, the lacth holds the shift register output just bafore LS goes to "L" level.
Clear Input	25	CL	Clear input pin with pull-up resistor. Normally "L" level. In this condition, driver output changes to " H " or "L" according to latch output level. When CL is "H", all driver output pins are fixed to "L".
Test Input	26	CHG	Test input pin with pull-down resistor. Normally "L" level, but here, if CL="H", then driver output changes to "H" or "L" according to latch output level. If CL = "L" when CHG is at "H" level, all driver output is fixed to "H" for test.
Data Output	28	DOUT	Serial output pin of shift register.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Logic Supply Voltage *1	$V_{\text {cc }}$	-	-0.3 to +6.5	V
Driver Supply Voltage *1, *2	$V_{\text {DISP }}$	-	-0.3 to +20	V
Input Voltage ${ }^{* 1}$	$\mathrm{V}_{\text {IN }}$	Applicable to all input pins	-0.3 to $\mathrm{V}_{\text {cc }}+0.3$	V
Data Output Voltage *1	V_{01}	Applicable to data output pin	-0.3 to $\mathrm{V}_{\text {cc }}+0.3$	V
Driver Output Voltage *1	V_{02}	Applicable to driver output pin	-0.3 to $\mathrm{V}_{\text {DISP }}+0.3$	V
Power Dissipation	P_{D}	$\mathrm{Ta} \leq 25^{\circ} \mathrm{C}$	1.0	W
Thermal Resistance *3	$\mathrm{R}_{\mathrm{j} \text {-a }}$	-	120	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-	-55 to +150	${ }^{\circ} \mathrm{C}$

*1 Maximum supply voltage with respect to L-GND and D-GND
*2 Catastrophic breakdown may occur if the applied voltage is more than the rating.
*3 Thermal resistance of package (between junction and atmosphere)
The junction temperature $\left(\mathrm{T}_{\mathrm{j}}\right)$ given by the following formula should not exceed $150^{\circ} \mathrm{C}$.
$T_{j}=P \times R_{j-a}+T a(P$ is the maximum power dissipation)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Max.	Unit
Logic Supply Voltage	$V_{C C}$	Applicable to logic supply voltage pin	4.5	5.5	V
Driver Supply Voltage	VIISP	Applicable to driver supply voltage pin	8	18	V
High Level Input Voltage	V_{IH}	Applicable to all input pins	0.8 VCC	-	V
Low Level Input Voltage	VIL	Applicable to all input pins	-	$0.2 \mathrm{~V}_{\text {CC }}$	V
Logic Output Current	101	Applicable to DOUT pin	-0.1	0.1	mA
Driver High Level Output Current	l_{02-1}	Only one driver is ON state	-	-6	mA
	102-2	Total current at all driver outputs are ON state	-	-50	mA
Driver Low Level Output Current	l_{02-3}	Applicable to all driver output pins	-	0.2	mA
CLK Frequency	flık	See Timing Diagram	-	0.5	MHz
Data Setup Time	$t_{\text {DS }}$	See Timing Diagram	400	-	ns
Data Hold Time	$\mathrm{t}_{\text {DH }}$	See Timing Diagram	300	-	ns
LS Pulse Width	twLs	See Timing Diagram	125	-	ns
CHG Pulse Width	twCHg	See Timing Diagram	10	-	$\mu \mathrm{s}$
CL Pulse Width	twCL	See Timing Diagram	10	-	$\mu \mathrm{S}$
CLK Pulse Width	twclk	See Timing Diagram	500	-	ns
CLK-LS Delay Time	tocLk-LS	See Timing Diagram	525	-	ns
LS-CLK Delay Time	tpls-CLK	See Timing Diagram	0	-	ns
LS-CHG Delay Time	tols-CHG	See Timing Diagram	0	-	ns
LS-CL Delay Time	tols-CL	See Timing Diagram	0	-	ns
Operating Temperature	$\mathrm{T}_{\text {op }}$	-	-40	105	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

DC Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DISP}}=8$ to $18 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+105^{\circ} \mathrm{C}\right)$

Parameter	Symbol		Condition	Min.	Typ.	Max.	Unit
Logic Power Supply Current	ICC1	No Load	$\mathrm{f}_{\text {CLK }}=0 \mathrm{~Hz}$	-	2	4	mA
	ICC2		$\mathrm{f}_{\text {CLK }}=0.5 \mathrm{MHz}$	-	4	6	
Driver Power Supply Current	IDISP	No Load		-	-	5	$\mu \mathrm{A}$
High Level Input	V_{p}	All input pins	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	2.4	2.75	-	V
Threshold Voltage			$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$	2.9	3.25	-	V
Low Level Input	V_{N}	All input pins	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	-	1.75	2.1	V
Threshold Voltage			$\mathrm{V}_{\text {cC }}=5.5 \mathrm{~V}$	-	2.25	2.6	V
Hysteresis Voltage	V_{H}	All input pins		0.3	1	-	V
High Level Input	$\mathrm{l}_{\mathrm{H} 1}$	$V_{1}=V_{c c}$	CHG pin	100	-	600	$\mu \mathrm{A}$
Current	I'H2 $^{\text {l }}$		Input pins except CHG pin	-1	-	1	$\mu \mathrm{A}$
Low Level Input	1 l 1	$\mathrm{V}_{1}=0 \mathrm{~V}$	CL pin	-600	-	-100	$\mu \mathrm{A}$
Current	ILL2		Input pins except CL pin	-1	-	1	$\mu \mathrm{A}$
High Level Data Output Current	IOH_{1}	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {OH1 }}=1.0 \mathrm{~V}$		-0.1	-	-	mA
Low Level Data Output Current	loL1	$\mathrm{V}_{0 L 1}=1.0 \mathrm{~V}$		0.1	-	-	mA
Driver High Level Output Current	$\mathrm{I}_{\text {OH2 }}$	Only one driver is ON state$V_{\text {DISP }}-V_{\text {OH2 } 2}=1.0 \mathrm{~V}$		-6	-	-	mA
Driver Low Level Output Current	IoL2	$\mathrm{V}_{0 L 2}=1.0 \mathrm{~V}$		0.2	-	-	mA
Voltage Difference Between GND Pins	$V_{G N D}$	Voltage difference between D-GND and L-GND *1		-0.1	0	0.1	V

*1 Pin D-GND and Pin L-GND are not connected internally.
Therefore, set the voltage between D-GND and L-GND at the same level by connecting both pins externally.

AC Characteristics

$$
\left(\mathrm{V}_{\mathrm{CC}}=4.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DISP}}=8 \text { to } 18 \mathrm{~V}, \mathrm{Ta}=-40 \text { to }+105^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
CLK-Dout Delay Time	tpD	See Timing Diagram	0.3	-	1.6	$\mu \mathrm{~s}$
Delay Time Low \rightarrow High	t $_{\text {DLH }}$	See Timing Diagram	-	1.0	2.0	$\mu \mathrm{~s}$
Transit Time Low \rightarrow High	$\mathrm{t}_{\text {TLH }}$	See Timing Diagram	-	2.0	5.0	$\mu \mathrm{~s}$
Delay Time High \rightarrow Low	t $_{\text {DHL }}$	See Timing Diagram	-	1.0	2.0	$\mu \mathrm{~s}$
Transit Time High \rightarrow Low	$\mathrm{t}_{\text {THL }}$	See Timing Diagram	-	2.0	5.0	$\mu \mathrm{~S}$

FUNCTIONAL DESCRIPTION

Function Table

CLOCK	DIN	P01	P02	P03	P04		P046	P047	P048	DOUT
1	H	H	P01k	P02k	P03k		P045k	P046k	P047k	P047k
1	L	L	P01k	PO2k	P03k		P045k	P047k	P047k	P047k

CL	CHG	LS	POn	HVOn
H	X	X	X	L
L	H	X	X	H
L	L	H	H	H
L	L	H	L	L
L	L	L	X	NC

L: Low Level, H: High Level, X: Don't Care, NC: No Change

PACKAGE DIMENSIONS

(Unit : mm)

Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2001 Oki Electric Industry Co., Ltd.

