GENERAL DESCRIPTION

The ML66525 family devices are high-performance 16-bit CMOS microcontrollers that utilize the nX-8/500S, Oki's proprietary CPU core.

Data from a personal computer with a USB connector can be automatically, quickly written or read to and from NAND type Flash Memory via USB I/F and NAND Flash Memory I/F.

The ML66525 family devices support clock gear functions, a sub-clock and HALT/STOP mode, which are suitable for low power applications.
The ML66525 family devices are provided with interfaces to external devices such as a 4-channel multi-functional serial interface with internal 32-byte FIFO and a high-speed bus interface that has separate address and data buses and does not require external address latches.
A wide variety of internal multi-functional timers enable various timing controls such as periodic and timed measurements.

With a 16-bit CPU core that enables high-speed arithmetic computations and a variety of bit processing functions, these general-purpose microcontrollers are optimally suited for Digital Audio devices such as MP3 players, voice recorders, handy games, and PC peripheral control systems (to control devices that can be connected to USB and store data into memory).

The ML66525 family devices also include the flash ROM version device (ML66Q525A) that is programmable with a single 3 V power supply (2.4 to 3.6 V).

APPLICATIONS

- Small-sized handy systems that require USB control and Storage control (Digital Audio players, etc)
- PC Peripheral Control Systems

ORDERING INFORMATION

Order Code or Product Name	Package	Remark
ML66525A-xxTB *1	100-pin plastic TQFP	mask ROM version (2.4 to 3.6 V)
ML66Q525A-NTB *2	(TQFP100-P-1414-0.50-K)	ML66525A flash ROM version (2.4 to 3.6 V)
ML66525A-xxLA *1	144-pin plastic LFBGA	ML66525A BGA package version (2.4 to 3.6 V)
ML66Q525A-NLA *2	(P-LFBGA144-1111-0.80)	ML66Q525A BGA package version (2.4 to 3.6 V)

*1 : The "xx" of "-xx" stands for the code number.
*2 : The " N " of "- N " stands for the flash ROM blank version.
When OKI programs and ship the flash ROM, the part number is changed from " -N " to "-XX" (code number), for example, ML66Q525-999TB.

FEATURES

Parameter	ML66525A
Operating temperature	-30 to $+70^{\circ} \mathrm{C}$
Power supply voltage/	$\mathrm{V}_{\mathrm{DD}}=2.4$ to $3.6 \mathrm{~V} / \mathrm{f}=24 \mathrm{MHz}$
Minimum instruction execution time	$83 \mathrm{nsec} @ 24 \mathrm{MHz}$
	61 ¢sec@32.768 kHz
Internal ROM size (max. external)	128 KB (1 MB)
Internal RAM size (max. external)	6 KB (1 MB)
I/O ports	64 I/O pins (with programmable pull-up resistors)
	6 input-only pins
	1 output-only pin
Timers	16-bit auto-reload timer $\times 2 \mathrm{ch}$
	8 -bit auto-reload timer $\times 1 \mathrm{ch}$
	8-bit auto-reload timer
	8 -bit auto-reload timer (also functions as watchdog timer) $\times 1$ ch
	Watch timer $\times 1 \mathrm{ch}$
	8 -bit PWM $\times 2$ ch (can also be used as 16 -bit PWM $\times 1$ ch)
Serial port	Synchronous (with 32-byte FIFO) $\times 1$ ch
	Synchronous (Shift register type) $\times 1 \mathrm{ch}$
	Synchronous/UART $\times 2 \mathrm{ch}$
A/D converter	10 -bit $\times 4 \mathrm{ch}$
External interrupts	Non-maskable $\times 1 \mathrm{ch}$
	Maskable $\times 6 \mathrm{ch}$
USB control	Compliant with USB spec. version 1.1
	High-speed transfer at 12 Mbps
	Internal PLL(x2 , x3, x4) -> 48 MHz
	Internal transceiver
	Vbus detection circuit (connection to USB host : detect/non-detect)
	Bus power available
	EP0 (IN 32 bytes, OUT 32 bytes), control transfer
	EP1 (64 bytes $\times 2$), bulk/interrupt transfer
	EP2 (64 bytes $\times 2$), bulk/interrupt transfer
	EP3 (32 bytes), bulk/interrupt transfer
	EP4 (64 bytes $\times 2$), bulk/isochronous/interrupt transfer
	EP5 (64 bytes $\times 2$), bulk/isochronous/interrupt transfer
	Automatic, high-speed data transfer
NAND Flash Memory control	ECC circuit
	Automatic, high-speed 512-byte data transfer
Interrupt priority	3 levels
Others	External bus Interface (separate address and data buses)
	Dual clocks function
	Clock gear function
	Different power available among USB, CPU core, and I/O port
Flash ROM version	ML66Q525A

FUNCTIONAL DESCRIPTION

1. High-performance CPU

The ML66525 family devices include the high-performance CPU, powerful bit manipulation instruction set, a variety of symmetrical addressing modes, and ROM WINDOW function, and also supports the best-optimized C compiler.
2. A variety of power saving modes

Attaching a $32.768-\mathrm{kHz}$ crystal produces a real time clock signal from the internal clock timer. A single clock can be used in place of dual clocks.
Switching the CPU clock to the dual clocks ($1 / 2$ or $1 / 4$ of the main clock) enables operation in a low power consumption mode. The clock gear function allows a $1 / 2$ or $1 / 4$ clock signal of the main clock to be selected as the CPU operating clock.
The ML66525 family devices are provided with a wide range of standby control functions such as the STOP mode that stops the oscillation circuit, the quick restart STOP mode that stops the CPU and peripherals while the oscillation circuit is operating, and the HALT mode that shuts down the CPU while peripherals are operating.

3. USB control

The family include USB controller which compliant with USB specification version 1.1 and can be transferred data with 12 Mbps circuit.
Also, USB controller have 6 kinds of endpoint and apply for control/bulk/isochronous/interrupt transfer.
With NAND Flash Memory control circuit, high speed data transfer is possible.
4. NAND Flash Memory control

The family include control circuit of NAND Flash Memory. Automatically data read from and write to outside NAND Flash Memory with 528 byte.
Also, include ECC circuit which detect data error and correct data error.
5. ML66Q525A with flash memory programmable with single power supply

In addition to mask ROM version devices, the ML66525 family devices include the ML66Q525A with internal 128 Kbytes of flash memory that can be programmed with a single power supply. The flash memory of the ML66Q525A can be programmed with a low power supply (2.4 to 3.6 V) using the internal voltage booster circuit.
6. Multifunctional, high-precision analog-to-digital converter

The family devices include a high-precision 10-bit analog-to-digital converter with four channels and are ideal for such analog control functions as processing audio signals, processing sensor inputs, detecting key switch states, and controlling battery use in portable equipment. Each channel has its own result register readily accessible from the software.

7. Multifunctional PWM

The family devices support both 8 - and 16 -bit PWM operations. Choosing between the time base counter output and the overflow from an 8-bit auto-reload time as the PWM counter clock source provides a great number of possibilities over a broad frequency range. The 16-bit PWM configuration supports a high-speed synchronization mode that generates a high-precision output signal with less ripple suitable for digital-toanalog applications.

8. Programmable pull-up resistors

Building the pull-up resistors into the chip contributes overall design compactness.
Making them programmable on a per-bit basis allows complete flexibility in circuit board layout and system design. These programmable pull-up resistors are available for all I/O pins except ports that have specific functions such as oscillator connection pins.

9. High-speed bus interface

The interface to external devices uses separate data and address buses.
This arrangement permits a rapid bus access for controlling the system from the microcontroller.

10. A variety of external interrupts

There are a total of seven interrupt channels for use in communicating with external devices; six channels for maskable interrupts and one channel for non-maskable interrupts.

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

100-pin Plastic TQFP

A symbol with " n " suffixed indicates an active Low pin.

PIN CONFIGURATION (TOP VIEW)

A symbol with "n" suffixed indicates an active Low pin.
[Note] Don't connect NC pins with others.

PIN DESCRIPTIONS

In the Type column, "I" indicates an input pin, "O" indicates an output pin, and "I/O" indicates an I/O pin. A symbol with "n" suffixed indicates an active Low pin.

Classification	Symbol	Description			
		Type	Primary function	Type	Secondary function
Port	$\begin{gathered} \text { P0_0/D0 } \\ \text { to } \\ \text { P0_7/D7 } \end{gathered}$	I/O	8-bit I/O port Pull-up resistors can be specified for each bit.	I/O	External memory access data I/O port
	$\begin{gathered} \hline \text { P1_0/A8 } \\ \text { to } \\ \text { P1_7/A15 } \end{gathered}$	I/O	8-bit I/O port Pull-up resistors can be specified for each bit.	0	External memory access address output port
	$\begin{gathered} \text { P2_0/A16 } \\ \text { to } \\ \text { P2_3/A19 } \end{gathered}$	I/O	4-bit I/O port Pull-up resistors can be specified for each bit.	0	External memory access address output port
	P3_1/PSENn	I/O	1-bit I/O port Pull-up resistors can be specified.	0	External program memory access read strobe output pin
	P3_2/RDn	0	1-bit output port	0	External data memory access read strobe output pin
	P3_3/WRn	I/O	1-bit I/O port Pull-up resistors can be specified.	0	External data memory access write strobe output pin
	$\begin{gathered} \hline \mathrm{P} 4 _0 / \mathrm{A0} \\ \text { to } \\ \mathrm{P} 4 _7 / \mathrm{A} 7 \end{gathered}$	I/O	8-bit I/O port Pull-up resistors can be specified for each bit.	0	External memory access address output port
	P6_0/EXINT0	I/O	4-bit I/O port Pull-up resistors can be specified for each bit.	I	External interrupt 0 input pin
	P6_1/EXINT1			1	External interrupt 1 input pin
	P6_2/EXINT2			1	External interrupt 2 input pin
	P6_3/EXINT3			1	External interrupt 3 input pin
	P7_6/PWM0OUT	I/O	2-bit I/O port Pull-up resistors can be specified for each bit.	0	PWM0 output pin
	P7_7/PWM1OUT			0	PWM1 output pin
	P8_0/RXD1	I/O	4-bit I/O port Pull-up resistors can be specified for each bit.	I	SIO1 receive data input pin
	P8_1/TXD1			0	SIO1 transmit data output pin
	P8_2/RXC1			I/O	SIO1 receive clock I/O pin
	P8_3/TXC1			I/O	SIO1 transmit clock I/O pin

Classification	Symbol	Description			
		Type	Primary function	Type	Secondary function
Port	P9_0/VBUSIN	I/O	1-bit I/O port Pull-up resistors can be specified.	I	Vbus detect external interrupt input pin (5V tolerant input)
	P10_0/SIOCK3	I/O	6-bit I/O port Pull-up resistors can be specified for each bit.	I/O	SIO3 transmit-receive clock I/O pin
	P10_1/SIOI3			1	SIO3 receive data input pin
	P10_2/SIOO3			0	SIO3 transmit data input pin
	P10_3/SIOCK4			I/O	SIO4 (with internal 32-byte FIFO) transmit-receive clock I/O pin
	P10_4/SIOO4			O	SIO4 (with internal 32-byte FIFO) transmit data output pin
	P10_5/SIOI4			I	SIO4 (with internal 32-byte FIFO) receive data output pin
	$\begin{gathered} \text { P12_0/Al0 to } \\ \text { P12_3/Al3 } \end{gathered}$	1	4-bit input port	1	A/D converter analog input port
	P13_0/EXINT8	1	2-bit input port	1	External interrupt 8 input pin
	P13_1/EXINT9			1	External interrupt 9 input pin
	P15_0/RXD6	I/O	4-bit I/O port Pull-up resistors can be specified for each bit.	1	SIO6 receive data input pin
	P15_1/TXD6			0	SIO6 transmit data output pin
	P15_2/RXC6			I/O	SIO6 receive clock I/O pin
	P15_3/TXC6			I/O	SIO6 transmit clock I/O pin
	$\begin{aligned} & \text { P20_0/FD0 } \\ & \text { to } \\ & \text { P20_7/FD7 } \end{aligned}$	I/O	8-bit I/O port Pull-up resistors can be specified for each bit.	I/O	NAND Flash Memory access data I/O port
	P21_0/FRDn	I/O	5-bit I/O port Pull-up resistors can be specified for each bit.	O	NAND Flash Memory access read strobe output pin
	P21_1/FWRn	I/O		0	NAND Flash Memory access write strobe output pin
	P21_2/FCLE	I/O		0	NAND Flash Memory access CLE strobe output pin
	P21_3/FALE	I/O		0	NAND Flash Memory access ALE strobe output pin
	P21_4/FRB	I/O		1	NAND Flash Memory access Ready/Busy input pin

Classification	Symbol	Type	Description
Power supply	V_{DD} _IO	I	IO Power supply pin Connect all the V_{DD} _IO pins.*
	$\mathrm{V}_{\text {DL_ }}$ CORE	1	Core Power supply pin Connect all the V_{DD} _CORE pins.*
	VBUS	1	USB Power supply pin (Vbus input pin)
	GND	1	GND pin Connect all the GND pins to GND.*
	$\mathrm{V}_{\text {REF }}$	1	Analog reference voltage pin (Connect to the V_{DD} pin when A / D converter is not used.)
	AGND	1	Analog GND pin (Connect to the GND pin when A/D converter is not used.)
Oscillation	XT0	1	Sub-clock oscillation input pin Connect to a crystal of $f=32.768 \mathrm{kHz}$.
	XT1n	0	Sub-clock oscillation output pin Connect to a crystal of $f=32.768 \mathrm{kHz}$. The clock output is opposite in phase to XTO.
	OSCO	1	Main clock oscillation input pin Connect to a crystal or ceramic oscillator. Or, input an external clock.
	OSC1n	0	Main clock oscillation output pin Connect to a crystal or ceramic oscillator. The clock output is opposite in phase to OSCO. Leave this pin unconnected when an external clock is used.
USB I/F	D+	I/O	D+ pin
	D-	I/O	D-pin
	PUCTL	0	External control output pin
Reset	RESn	1	Reset input pin
Others	NMI	1	Non-maskable interrupt input pin
	TEST	1	Test pin Connect to the GND pin when using as normal operation.
	$\mathrm{V}_{\text {TM }}$	1	Test pin Connect to the GND pin when using as normal operation.
	FLAMOD	I	Flash ROM programming mode input pin When the FLAMOD pin is set to " L ", the device enters a programming mode. Connect to the V_{DD} IO pin when using as normal operation.
	EAn	1	External program memory access input pin When the EA pin is enabled (low level), the internal program memory is masked and the CPU executes the program code in external program memory through all address space.

* Connect all V_{DD} IO pins, all V_{DD} _CORE pins and all GND pins.

If a device has one or more $V_{D D}$ IO, $V_{D D}$ _CORE, or GND pins to which the power supply or the ground potential is not connected, the family devices are not guaranteed to have normal operations.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition		Rated value	Unit
Digital power supply voltage	$\begin{gathered} \mathrm{V}_{\mathrm{DD} _} \mathrm{CORE} \\ \mathrm{~V}_{\mathrm{DD} _} \mathrm{IO} \\ \text { VBUS } \end{gathered}$	$\begin{gathered} \mathrm{GND}=\mathrm{AGND}=0 \mathrm{~V} \\ \mathrm{Ta}=25^{\circ} \mathrm{C} \end{gathered}$		-0.3 to +4.6	V
Input voltage	V_{1}	Other than P9_0		-0.3 to V_{DD} IO +0.3	V
		P9_0 (5 V tolerant input)		-0.3 to +0.6	V
Output voltage	V_{0}			-0.3 to V_{DD} IO +0.3	V
Analog reference voltage	$V_{\text {REF }}$			-0.3 to +4.6	V
Analog input voltage	V_{Al}			-0.3 to $\mathrm{V}_{\text {REF }}$	V
Power dissipation	P_{D}	$\mathrm{Ta}=70^{\circ} \mathrm{C}$ per package	100-pin TQFP	680	mW
			144-pin LFBGA	595	mW
Storage temperature	$\mathrm{T}_{\text {STG }}$		-	-50 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Condition	Range	Unit
Digital power supply voltage	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD} _} \mathrm{CORE} \\ \mathrm{~V}_{\mathrm{DD}} \mathrm{IO} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{OSC}} \leq 24 \mathrm{MHz} \\ \mathrm{v}_{\mathrm{DD}} \text { CORE } \leq \mathrm{V}_{\mathrm{DD}} \mathrm{IO} \end{gathered}$		2.4 to 3.6	V
Analog reference voltage	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\text {DD_ }}$ CORE $\leq \mathrm{V}_{\text {REF }}$		2.4 to 3.6	V
Analog input voltage	$\mathrm{V}_{\text {Al }}$		-	AGND to $\mathrm{V}_{\text {REF }}$	V
VBUS input voltage	VBUS		-	3.0 to 3.6	V
Memory hold voltage	$V_{\text {DDH }}$	$\mathrm{f}_{\text {osc }}=0 \mathrm{~Hz}$		2.0 to 3.6	V
Operating frequency	$\mathrm{f}_{\text {osc }}$	USB is used		12, 16, 24	MHz
		USB is unused		2 to 24	
	f_{XT}		-	32.768	kHz
Ambient temperature	Ta		-	-30 to +70	${ }^{\circ} \mathrm{C}$
Fan out	N		MOS load	20	-
		TTL load	P7, P10_0 to P10_2	6	-
			$\begin{gathered} \text { P0, P1, P2, P3, P4, } \\ \text { P6, P8, P9, } \\ \text { P10_3 to P10_5, P15, } \\ \text { P20, P21 } \end{gathered}$	1	-

ALLOWABLE OUTPUT CURRENT VALUES

$\left(\mathrm{V}\right.$ DD_IO $=2.4$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-30$ to $\left.+70^{\circ} \mathrm{C}\right)$						
Parameter	Pin	Symbol	Min.	Typ.	Max.	Unit
"H" output pin (1 pin)	All output pins	I_{OH}	-	-	-10	mA
"H" output pins (sum total)	Sum total of all output pins	$\sum \mathrm{IOH}_{\text {O }}$	-	-	-70	
"L" output pin (1 pin)	All output pins	l_{OL}	-	-	10	
"L" output pins (sum total)	Sum total of P0, P3	$\sum \mathrm{IOL}_{\text {L }}$	-	-	35	
	Sum total of P1, P2, P4					
	Sum total of P6, P7, P8, P9					
	Sum total of P10, P15					
	Sum total of P20, P21				70	
	Sum total of all output pins				160	

[Note] Connect all V_{DD} CORE and $\mathrm{V}_{\text {DD_ }}$ IO pins to the power supply voltage and all GND pins to the ground voltage. If there is a pin or pins that are not connected to the power supply voltage on ground voltage, the device cannot be guaranteed for normal operation.

INTERNAL FLASH ROM PROGRAMMING CONDITIONS

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD} _} \mathrm{CORE}$ $\mathrm{V}_{\mathrm{DD} _} \mathrm{IO}$	$\mathrm{V}_{\mathrm{DD} _}$CORE $\leq \mathrm{V}_{\mathrm{DD} _} \mathrm{IO}$	2.4 to 3.6	V
	Ta	During Read	-30 to +70	${ }^{\circ} \mathrm{C}$
		During Programming	+0 to +50	${ }^{\circ} \mathrm{C}$
Endurance	CEP	-	100	Cycles
Blocks size	-	-	128	bytes

ELECTRICAL CHARACTERISTICS

DC Characteristics 1 (Except USB port)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
"H" input voltage *1	V_{IH}	-	$0.80 \mathrm{~V}_{\mathrm{DD}}$	-	5.5	V
"H" input voltage			$0.80 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}+0.3$	
"L" input voltage	$\mathrm{V}_{\text {IL }}$	-	-0.3	-	$0.2 \mathrm{~V}_{\text {D }}$	
"H" output voltage *2	V_{OH}	$\mathrm{I}_{0}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\text {DD }}-0.4$	-	-	
		$\mathrm{I}_{\mathrm{O}}=-2.0 \mathrm{~mA}$	$\mathrm{V}_{\text {D }}-0.8$	-	-	
"H" output voltage *3		$\mathrm{I}_{0}=-200 \mu \mathrm{~A}$	$V_{D D}-0.4$	-	-	
		$\mathrm{I}_{0}=-1.0 \mathrm{~mA}$	$V_{D D}-0.8$	-	-	
"L" output voltage *2	V_{OL}	$\mathrm{I}_{0}=3.2 \mathrm{~mA}$	-	-	0.5	
		$\mathrm{I}_{0}=5.0 \mathrm{~mA}$	-	-	0.9	
"L" output voltage *3		$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$	-	-	0.5	
		$\mathrm{I}_{\mathrm{O}}=2.5 \mathrm{~mA}$	-	-	0.9	
Input leakage current *4, *6	$\mathrm{IHH}_{\text {H }} / \mathrm{IL}^{\text {L }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}} / 0 \mathrm{~V}$	-	-	1/-1	$\mu \mathrm{A}$
Input current *5			-	-	1/-90	
Input current *7			-	-	15/-15	
Output leakage current *2, *3	$\mathrm{I}_{\text {L }}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} / 0 \mathrm{~V}$	-	-	± 10	$\mu \mathrm{A}$
Pull-up resistance	$\mathrm{R}_{\text {pull }}$	$\mathrm{V}_{1}=0 \mathrm{~V}$	40	100	200	$\mathrm{k} \Omega$
Input capacitance	C_{1}	- $1 \mathrm{MHz} \mathrm{Ta}=25^{\circ} \mathrm{C}$	-	5	-	pF
Output capacitance	C	cic $=1 \mathrm{MHz}, \mathrm{Ta}=25 \cdot \mathrm{C}$	-	7	-	
Analog reference supply current	$\mathrm{I}_{\text {REF }}$	During A/D operation	-	1.8	5	mA
		When A / D is stopped	-	-	5	$\mu \mathrm{A}$

$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} \mathrm{IO}$
*1. Applicable to P9_0 (5 V tolerant input)
*2. Applicable to P7 and P10_0 to P10_2
*3. Applicable to P0, P1, P2, P3, P4, P6 , P8, P9, P10_3 to P10_5, P15, P20 and P21
*4. Applicable to P12 and P13
*5. Applicable to RESn and FLAMOD
*6. Applicable to EAn, NMI, and TEST
*7. Applicable to OSC0

Supply Current

- ML66525A

Mode	Symbol	Condition		Min.	Typ.	Max.	Unit	Applicable power supply
CPU operation mode	$I_{\text {D }}$	fosc $=24 \mathrm{MHz}$, No load		-	28	60	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \mathrm{CORE} \\ & +\mathrm{V}_{\mathrm{DD}} \mathrm{IO} \end{aligned}$
		fosc $=24 \mathrm{MHz}$, DMA/media control stopped. No load			18	50		
		$\mathrm{f}_{\mathrm{xt}}=32.768 \mathrm{kHz}$, DMA/media control stopped. No load *1		-	100	300	$\mu \mathrm{A}$	
USB operation mode	$\mathrm{I}_{\text {BUS }}$	Setting of 48 MHz for multiplication selection. No Load		-	25	45	mA	VBUS
HALT mode	$\mathrm{I}_{\text {DDH }}$	fosc $=24 \mathrm{MHz}$, DMA/media control stopped. No load		-	9	18	mA	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}} \mathrm{CORE} \\ & +\mathrm{V}_{\mathrm{DD}} \mathrm{IO} \\ & \hline \end{aligned}$
STOP mode	$\mathrm{I}_{\text {DS }}$	$\begin{aligned} & \text { OSC is } \\ & \text { stopped } \end{aligned}$	XT is used *2	-	15	160	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} D} \mathrm{CORE} \\ & +\mathrm{V}_{\mathrm{DD}} \mathrm{IO} \end{aligned}$
			XT is not used *2	-	10	150		
Suspend current	$\mathrm{I}_{\text {SUSP }}$	OSC is stopped	nd state XT is not used * 1	-	1	100	$\mu \mathrm{A}$	VBUS

The values in the Typ. Column indicate reference values at $25^{\circ} \mathrm{C}$ and 3.0 V (The VBUS currents indicate values at 3.3 V).
*1: The temperature condition ranges from -30 to $+50^{\circ} \mathrm{C}$
*2: The ports used as inputs are at V_{DD} IO or 0 V . Other ports are unloaded.

- ML66Q525A

Mode	Symbol	Condition		Min.	Typ.	Max.	Unit	Applicable power supply
CPU operation mode	I_{DD}	fosc $=2$	MHz, No load	-	28	60	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}-} \mathrm{CORE} \\ & +\mathrm{V}_{\mathrm{DD}} 1 \mathrm{IO} \end{aligned}$
		fosc $=24 \mathrm{MHz}$, DMA/media control stopped. No load			18	50		
		$\mathrm{f}_{\mathrm{XT}}=32.768 \mathrm{kHz}, \mathrm{DMA} / \mathrm{media}$ control stopped. No load *1		-	100	300	$\mu \mathrm{A}$	
USB operation mode	$\mathrm{I}_{\text {BUS }}$	Setting of 48 MHz for multiplication selection No Load		-	25	45	mA	VBUS
HALT mode	$\mathrm{I}_{\text {DDH }}$	fosc $=24 \mathrm{MHz}, \mathrm{DMA} /$ media control stopped. No load		-	10	20	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} D} \mathrm{CORE} \\ & +\mathrm{V}_{\mathrm{DD}} \mathrm{IO} \\ & \hline \end{aligned}$
STOP mode	$\mathrm{I}_{\text {DDS }}$	$\begin{aligned} & \text { OSC is } \\ & \text { stopped } \end{aligned}$	XT is used *2	-	15	160	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \mathrm{CORE} \\ & +\mathrm{V}_{\mathrm{DD}} \mathrm{IO} \end{aligned}$
			XT is not used *2	-	10	150		
Suspend current	$\mathrm{I}_{\text {SUSP }}$	Suspend OSC is stopp	ate, $D+/ D-$ fixed d, XT is not used * 1	-	1	100	$\mu \mathrm{A}$	VBUS

The values in the Typ. Column indicate reference values at $25^{\circ} \mathrm{C}$ and 3.0 V (The VBUS currents indicate values at 3.3 V).
*1: The temperature condition ranges from -30 to $+50^{\circ} \mathrm{C}$
*2: The ports used as inputs are at $\mathrm{V}_{\mathrm{DD}} _\mathrm{IO}$ or 0 V . Other ports are unloaded.

DC Characteristics 2 (USB port)

$\left(\mathrm{VBUS}=3.0\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-30$ to $+70^{\circ} \mathrm{C}$)							
Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Applicable pin
Differential input sensitivity	V_{DI}	\|($\mathrm{D}+$) - (D-)\|	0.2	-	-	V	D+, D-
Differential common mode range	V_{CM}	Includes VDI	0.8	-	2.5		
Single ended receiver threshold	$\mathrm{V}_{\text {SE }}$		0.8	-	2.0		
"H" output voltage	V_{OH}	$15 \mathrm{k} \Omega$ to GND	2.8	-	-	V	D+, D-
		$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	VBUS - 0.2	-	-	V	PUCTL
		$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	-	-		
"L" output voltage	V_{OL}	$1.5 \mathrm{k} \Omega$ to 3.6 V	-	-	0.3	V	D+, D-
Output leakage current	$\mathrm{I}_{\text {LO }}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{VBUS} / 0 \mathrm{~V}$	-	-	± 10	$\mu \mathrm{A}$	D+, D-
		$\mathrm{V}_{\mathrm{O}}=\mathrm{VBUS} / 0 \mathrm{~V}$	-	-	± 10		PUCTL

AC Characteristics (Except USB port)

(1) External program memory control

$\mathrm{n}=0$ to 3 (n wait cycles inserted)

Bus timing during no wait cycle time
(2) External data memory control

Bus timing during no wait cycle time
(3) Serial port control

1. Serial port 1, 6 (SIO1, 6)

Master mode (Clock synchronous serial port)

Parameter	Symbol	Condition	Min.	Max.	Unit
Cycle time	$\mathrm{t}_{\text {cyc }}$	$\mathrm{f}_{\text {OSC }}=24 \mathrm{MHz}$	41.67	-	ns
Serial clock cycle time	$\mathrm{t}_{\text {sckc }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$4 \mathrm{t}_{\text {cyc }}$	-	
Output data setup time	$\mathrm{t}_{\text {STM }}$		2t ϕ - 10	-	
Output data hold time	$\mathrm{t}_{\text {STMXH }}$		$5 t \phi-20$	-	
Input data setup time	$t_{\text {SRMXS }}$		21	-	
Input data hold time	$\mathrm{t}_{\text {SRMXH }}$		0	-	

Slave mode (Clock synchronous serial port)

Parameter	Symbol	Condition	Min.	Max.	Unit
Cycle time	$t_{\text {cyc }}$	$\mathrm{f}_{\text {OSC }}=24 \mathrm{MHz}$	41.67	-	ns
Serial clock cycle time	$\mathrm{t}_{\text {sckc }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$4 \mathrm{t}_{\text {cyc }}$	-	
Output data setup time	$\mathrm{t}_{\text {STMXS }}$		$2 \mathrm{t} \phi-30$	-	
Output data hold time	$\mathrm{t}_{\text {STM }}$		$4 \mathrm{t} \phi-20$	-	
Input data setup time	$\mathrm{t}_{\text {SRMXS }}$		21	-	
Input data hold time	$\mathrm{t}_{\text {SRMXH }}$		7	-	

2. Serial port 4 (SIO4)

Master mode (Clock synchronous serial port)

Parameter	Symbol	Condition	Min.	Max.	Unit
Cycle time	$t_{\text {cyc }}$	$\mathrm{f}_{\text {OSC }}=24 \mathrm{MHz}$	41.67	-	ns
Serial clock cycle time	$\mathrm{t}_{\text {sckc }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	400	-	
Output data setup time	$\mathrm{t}_{\text {StM }}$		190	-	
Output data hold time	$\mathrm{t}_{\text {STMXH }}$		130	-	
Input data setup time	$\mathrm{t}_{\text {SRMXS }}$		21	-	
Input data hold time	$\mathrm{t}_{\text {SRMXH }}$		0	-	

Slave mode (Clock synchronous serial port)

$\left(\mathrm{V}_{\mathrm{DD}}\right.$ CORE $=\mathrm{V}_{\mathrm{DD} _} \mathrm{IO}=\mathrm{V}_{\text {REF }}=2.4$ to 3.6 V, GND $=\mathrm{AGND}=0 \mathrm{~V}, \mathrm{Ta}=-30$ to $+70^{\circ} \mathrm{C}$					
Parameter	Symbol	Condition	Min.	Max.	Unit
Cycle time	$t_{\text {cyc }}$	$\mathrm{f}_{\text {osc }}=24 \mathrm{MHz}$	41.67	-	ns
Serial clock cycle time	$\mathrm{t}_{\text {sck }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	400	-	
Output data setup time	$\mathrm{t}_{\text {STMXS }}$		70	-	
Output data hold time	$\mathrm{t}_{\text {STMXH }}$		180	-	
Input data setup time	$\mathrm{t}_{\text {SRMXS }}$		21	-	
Input data hold time	$\mathrm{t}_{\text {SRMXH }}$		7	-	

Measurement points for AC timing (except the serial port)

Measurement points for AC timing (the serial port)

A/D Converter Characteristics

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Resolution	n	Refer to measurement circuit 1 Analog input source impedance $R_{1} \leq 5 \mathrm{k} \Omega$	-	10	-	Bit
Linearity error	E_{L}		-	-	± 3	LSB
Differential Linearity error	$E_{\text {D }}$		-	-	± 2	
Zero scale error	$\mathrm{E}_{\text {zs }}$		-	-	+3	
Full-scale error	$\mathrm{E}_{\text {FS }}$		-	-	-3	
Cross talk	$\mathrm{E}_{C T}$	Refer to measurement circuit 2	-	-	± 1	
Conversion time	$\mathrm{t}_{\text {conv }}$	Set according to ADTM set data	16	-	3906.3	$\mu \mathrm{s} / \mathrm{ch}$

Measurement Circuit 1

Measurement Circuit 2
Definition of Terminology

1. Resolution

Resolution is the value of minimum discernible analog input.
With 10 bits, since $2^{10}=1024$, resolution of $\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{AGND}\right) \div 1024$ is possible.
2. Linearity error

Linearity error is the difference between ideal conversion characteristics and actual conversion characteristics of a $10-\mathrm{bit} \mathrm{A} / \mathrm{D}$ converter (not including quantization error).
Ideal conversion characteristics can be obtained by dividing the voltage between $\mathrm{V}_{\text {REF }}$ and AGND into 1024 equal steps.
3. Differential linearity error

Differential linearity error indicates the smoothness of conversion characteristics. Ideally, the range of analog input voltage that corresponds to 1 converted bit of digital output is $1 \mathrm{LSB}=\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{AGND}\right) \div 1024$. Differential error is the difference between this ideal bit size and bit size of an arbitrary point in the conversion range.
4. Zero scale error

Zero scale error is the difference between ideal conversion characteristics and actual conversion characteristics at the point where the digital output changes from 000 H to 001 H .
5. Full-scale error

Full-scale error is the difference between ideal conversion characteristics and actual conversion characteristics at the point where the digital output changes from 3FEH to 3FFH.

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Packages

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person on the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Packages
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki's responsible sales person on the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

Date	Changes compared to previous version
Oct. 2000	-
Mar. 2001	- Modified the contents of P3_2 and P3_3 in table on P-8. - Added the contents of P9_0 in table on P-9. - Modified the contents of PUCTL in table on P-10. - Added the contents of "ABSOLUTE MAXIMUM RATINGS". - Added the contents of "RECOMMENDED OPERATING CONDITIONS". - Added the contents of "ALLOWABLE OUTPUT CURRENT VALUES". - Added the contents of ""NTERNAL FLASH ROM PROGRRAMMING CONDITIONS". - Added the contents of "ELECTRICAL CHARACTERISTICS".
Oct. 2001	- Modified the name from ML66525 to ML66525A. - Modified the name from ML66Q525 to ML66Q525A. - Modified the contents of "ML66Q525 Supply Current " table on P-14. - Modified the contents of table on P-21.

NOTICE

1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans.
Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2001 Oki Electric Industry Co., Ltd.

