OKI Electronic Components KGL4202/KGL4202C This version: Dec. 2000 Preliminary

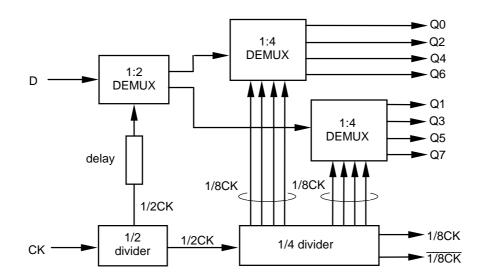
10Gb/s/ 12.5Gb/s 1:8 Demultiplexer

GENERAL DESCRIPTION

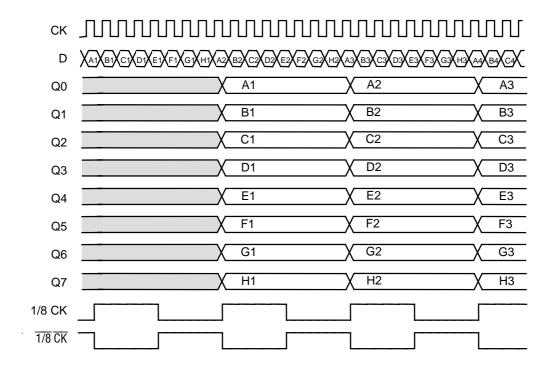
The KGL4202/KGL4202C converts high-speed serial data stream into low-speed 8bit parallel data streams up to 10Gb/s/ 12.5Gb/s. Parallel data outputs are synchronized with the internal 1/8 clock generated from an input clock on chip. The device is ideal for use in the 10Gb/s/ 12.5Gb/s optical communication systems.

FEATURES

• High speed operation : 10Gb/s for KGL4202


12.5Gb/s for KGL4202C

Single power supply voltage
 Low power dissipation
 Package
 2V
 3.2W
 40 pin QFP


ABSOLUTE MAXIMUM RATINGS

No.	Item	Symbol	Min.	Max.	Unit
1	Supply Voltage for Internal Logic	V_{DD}	-0.3	2.3	V
2	Supply Voltage for Output Buffer	V_B	-0.3	2.3	V
3	Clock Input	CK	-0.3	1.5	V
4	Data Inputs	D	-0.3	1.5	V
5	Temperature at Package Base under Bias	Ts	-45	100	°C
6	Storage Temperature	T _{st}	-45	125	°C

FUNCTIONAL BLOCK DIAGRAM

TIME CHART

RECOMMENDED OPERATING CONDITIONS

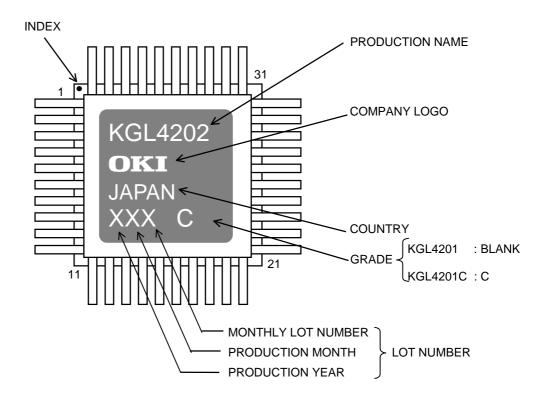
Item	Symbol	Min.	Тур.	Max.	Unit
Power Supply Voltage for Internal Logic	V_{DD}	1.9	2.0	2.1	V
Power Supply Voltage for Output Buffer	V_B	1.9	2.0	2.1	V
Operating Temperature Range at Package Base	T_s	0		70	°C

ELECTRICAL CHARACTERISTICS

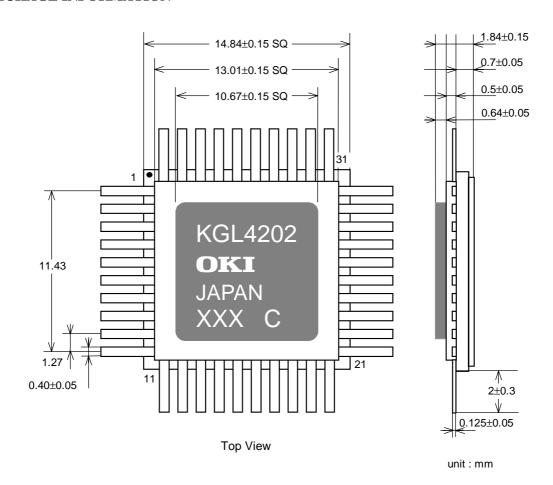
DC Characteristics

$V_{DD} = 2 \text{ V}, V_{B} = 2 \text{ V}, T_{S} = 2 \text{ V}$						= 25°C
Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Power Dissipation	Р		_	3.2	4.0	W
High-level Output Voltage	V _{OH}	50 Ω Load	0.85		1.3	V
Low-level Output Voltage	V_{OL}	50 Ω Load	0.0		0.3	V
Clock Input Voltage Swing	V _{ICK}	Capacitive Coupling	0.5		0.9	Vp-p
Data Input Voltage Swing	V_{ID}	Capacitive Coupling	0.5		0.9	Vp-p

AC Characteristics

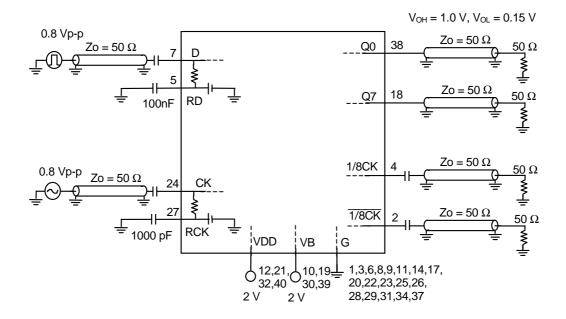

				$V_{DD} = 1$	$2 \text{ V}, \text{ V}_{\text{B}} =$	2 V, Ts	= 25°C_	
Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit		
Maximum Operating KGL4202		40		10			GHz	
Clock Frequency KGL4202C		fo		12.5				
Set-up Time (D to CK ↓	t _{DS}		-60	-45	-30	ps		
Hold Time (CK ↓ to D)	t _{DH}		65	80	95	ps		
CK-D KGL4202		- Δt _M	fo = 10 GHz	50	65		ps	
Phase Margin KGL4202C			fo = 12.5 GHz	40	55			
1/8CK↑ to Valid Data	t _{C8Q}		-40	-10	20	ps		

WAVEFORMS



 $\Delta t_C = 1/fo$

MARKING


PACKAGE INFORMATION

Pin Assignment

Fili Assignment							
Pin	Symbol	Description	Pin	Symbol	Description		
1	G	Ground	21	V_{DD}	Power Supply (Logic)		
2	1/8CK	1/8 Clock Output	22	G	Ground		
3	G	Ground	23	G	Ground		
4	1/8CK	1/8 Clock Output	24	CK	Clock Input		
5	RD	Data Reference Bias	25	G	Ground		
6	G	Ground	26	G	Ground		
7	D	Data Input	27	RCK	Clock Reference Bias		
8	G	Ground	28	G	Ground		
9	G	Ground	29	G	Ground		
10	V_{B}	Power Supply (Buffer)	30	V_{B}	Power Supply (Buffer)		
11	G	Ground	31	G	Ground		
12	V_{DD}	Power Supply (Logic)	32	V _{DD}	Power Supply (Logic)		
13	Q1	Data Output 1	33	Q6	Data Output 6		
14	G	Ground	34	G	Ground		
15	Q3	Data Output 3	35	Q4	Data Output 4		
16	Q5	Data Output 5	36	Q2	Data Output 2		
17	G	Ground	37	G	Ground		
18	Q7	Data Output 7	38	Q0	Data Output 0		
19	V_{B}	Power Supply (Buffer)	39	V_{B}	Power Supply (Buffer)		
20	G	Ground	40	V_{DD}	Power Supply (Logic)		

TYPICAL INTERFACE CONFIGURATION

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2000 Oki Electric Industry Co., Ltd.