Natural Gas Sensor

AS-MLK

Whether for air quality, safety or control, sensor applications have one common requirement: a reliable sensor component. AppliedSensor's ability to micro-machine sensor chips using standard silicon wafer technology allows to produce consistently reliable sensors in high volumes for mass market applications.

Unique micro machined, low power sensor design

AppliedSensor's high-performance ML sensor components offer reduced power consumption and increased packaging flexibility. The sensors are produced by combining the benefits of thick film, thin film and patents pending technologies on silicon substrate. Heater and interdigital electrode structures are positioned on a 1 µm-thin membrane on top of which is deposited a tin dioxide sensitive layer that creates gas concentration-dependent conductivity.

The sensor component has high sensitivity and selectivity to natural gas and is packaged in a standard TO-39 (solid TO-5), 4-pin header. For further cost efficiency, the low heat-generating micro-machined chip may be adhered directly to a printed circuit board (Chip on Board packaging).

With an optimized operation mode, the MLK sensor is highly selective to natural gas with minimal cross-sensitivity from other chemical compounds and humidity. AppliedSensor offers comprehensive application development including complete electronics and firmware integration.

Key Benefits

- High sensitivity to CH₄
 (0.01 to 4%)
- Very low power consumption
- Long lifetime
- Low cross sensitivity
- Long term stability

Typical Applications

 Natural gas monitoring and leakage detection

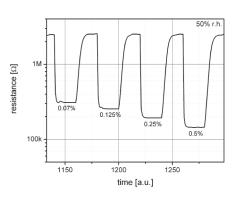
Features

Chip size	2x2 mm
ncluding header	Ø: 10 mm, height: 11 mm
Operational Conditions	
Operation temperature range	300°C - 350°C
ypical operation temperature	320°C
Environmental Conditions	
Ambient temperature range	-40°C - 120°C (lower than op. temp.)
mbient humidity	0 - 95% RH
lectrical Characteristics	
Power consumption	41 mW at 320°C
ypical sensor resistance during	
operation in air (50% RH)	1 M Ω range
ypical sensor resistance during	
peration in 0,5% CH4 (50% RH)	100 k Ω range
ignal output component	Resistance
leater	
ypical heater voltage	~2.7 V for 320°C
Temperature coefficient	TC≈1700 ppm/K
pical heater resistance at RT	95 Ω
Sensing Properties	
Concentration range	Can withstand 10% CH_4 in air
	(explosion proof version)
Sensitivity range	0.01 to 4%
ypical response / recovery time	Seconds
xpected lifetime	Years
Cross sensitivity	Limited cross sensitivity to humidity,
	hydrogen and hydrocarbons
Packaging Options	
Standard TO-39 (solid TO-5) packag	e with protection membrane.
Pre-mould packages.	

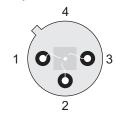
Chip on board solutions.

Restrictions

Contact of the sensitive layer with liquids shall be avoided.


Do not operate gas sensors in the vicinity of silicone and polysiloxanes.

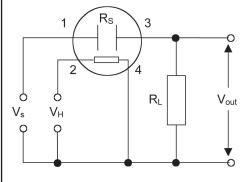
AppliedSensor is not responsible for the design, implementation, manufacture or results from use of products that incorporate AppliedSensor components unless expressly agreed to in writing. Prior to using or distributing any product that incorporates AppliedSensor components, users and distributors should assure adequate design, testing and operating safeguards, and consult with AppliedSensor's technical staff, as necessary. All AppliedSensor components and services are sold subject to AppliedSensor's terms and conditions of sale visit us at www.appliedSensor.com.AppliedSensor and the AppliedSensor logo are trademarks of AppliedSensor Sweden AB, AppliedSensor GmbH and AppliedSensor, Inc. Copyright © 2009 AppliedSensor Sweden AB. 08.09


AppliedSensor Sweden AB Diskettgatan 11 SE-583 35 Linköping, Sweden Tel: +46 13 GRS PAR自动化 http: Fax: +46 13 262 929 AppliedSensor GmbH Gerhard-Kindler-Str. 8 72770 Reutlingen, Germany WWW: StenStor1-514860m/ TEL: Fax: 49-7121-51486-29 AppliedSensor, Inc. 53 Mountain Boulevard Warren, NJ 07059, USA 755983576989374A770755-83376182 E-MAIL: szss200163.com www.appliedsensor.com

0

Typical Sensor Response

Pin Layout



Top view AS-MLK Sensor Component

Pin Function

- 1 Sensor electrode 1
- 2 Heater power
- **3** Sensor electrode 2
- 4 Heater ground

Basic Measuring Circuit (Exemplified and Simplified)

